K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để chứng minh rằng \( BM = CN \), chúng ta sẽ sử dụng tính chất của tam giác cân.

 

Vì tam giác \( ABC \) cân tại \( A \), nên ta có \( AM = MC \) và \( AN = NB \), vì \( M \) là trung điểm của \( AC \) và \( N \) là trung điểm của \( AB \).

 

Bây giờ, ta cần chứng minh \( BM = CN \).

 

Ta có thể sử dụng định lí đối xứng của tam giác để chứng minh điều này.

 

Xét tam giác \( AMC \) và \( ANB \):

- \( AM = MC \) (vì \( M \) là trung điểm của \( AC \))

- \( AN = NB \) (vì \( N \) là trung điểm của \( AB \))

- \( AC = AB \) (vì tam giác \( ABC \) cân tại \( A \))

 

Theo định lí đối xứng của tam giác, ta có \( BM = CN \), vì hai tam giác \( AMC \) và \( ANB \) là đối xứng với nhau qua đường trung tuyến \( MN \).

 

Do đó, \( BM = CN \).

6 tháng 4

sai rồi

 

TT
tran trong
Giáo viên
7 tháng 4

- Em tự hào về truyền thống làng mình.

- Giới thiệu cho bạn bè về truyền thống làng mình.

- Học hỏi từ ông, cha về truyền thống.

- Tìm cách để phát triển truyền thống đó.

NV
6 tháng 4

1 USD =100 cents nên 50 cents =0,5 USD

50 cent = 0,5 USD 

4
456
CTVHS
6 tháng 4

Đúng , là đơn vị tiền xu

#include <bits/stdc++.h>
using namespace std;

int main()
{
    long long n;
    cin>>n;
    long long tong=0;
    for(int i=1; i<=n; i++)
    {
        tong+=i;
    }
    cout<<tong;
}

6 tháng 4

cũng dễ

6 tháng 4

Câu 1:

1. D. aunt

2. C. flood

3. A. played

4. B. health

Câu 2:

1. C. arrive

2. B. power

8 tháng 4

1 D

2 C

3 A

4 B

1 C

2 B

6 tháng 4

loading...  

a) Do ∆ADB vuông cân tại A (gt)

⇒ AB = AD

Do ∆AEC vuông cân tại A (gt)

⇒ AE = AC

Xét hai tam giác vuông: ∆ABC và ∆ADE có:

AB = AD (cmt)

AC = AE (cmt)

∆ABC = ∆ADE (hai cạnh góc vuông)

⇒ BC = DE (hai cạnh tương ứng)

b) Do ∆ADE vuông cân tại A (gt)

⇒ ∠ADB = ∠ABD = 45⁰

Do ∆AEC vuông cân tại A (gt)

⇒ ∠ACE = ∠AEC = 45⁰

⇒ ∠ACE = ∠ADB = 45⁰

Mà ∠ACE và ∠ADB là hai góc so le trong

⇒ DB // EC

c) Do AH ⊥ BC (gt)

⇒ MH ⊥ CN

Do AF ⊥ MC (gt)

⇒ NF ⊥ MC

∆CMN có:

MH ⊥ CN (cmt)

NF ⊥ MC (cmt)

⇒ MH và NF là hai đường cao của ∆CMN

Mà MH cắt NF tại A

⇒ CA là đường cao thứ ba của ∆CMN

⇒ CA ⊥ MN

d) Em xem lại đề nhé