Cho ba điểm A,B,C không thẳng hàng. Qua A kẻ đường thẳng n song song với đường thẳng BC. Qua C kẻ đường thẳng m song song với đường thẳng AB. Hỏi số giao điểm tạo bởi 4 đưởng thẳng m,n,AB,BC là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(D=3^0+3^1+...+3^{302}\)
=>\(3D=3+3^2+...+3^{303}\)
=>\(3D-D=3+3^2+...+3^{303}-3^0-3^1-...-3^{202}\)
=>\(2D=3^{303}-1\)
=>\(2D+1=3^{303}\)
=>\(27n=3^{303}\)
=>\(n=3^{300}\)
1)\(D=3^0+3^1+...+3^{302}\)
\(\Rightarrow3D=3\left(1+3+3^2+...+3^{302}\right)\)
\(\Rightarrow3D=3+3^2+3^3+...+3^{302}+3^{303}\)
\(\Rightarrow3D-D=\left(3+3^2+3^3+...+3^{303}\right)-\left(3^0+3^1+...+3^{302}\right)\)
\(\Rightarrow2D=3^{303}-3^0\)
\(\Rightarrow2D=3^{303}-1\)
\(\Rightarrow2D-1=3^{303}\)
\(Do3^{303}=\left(3^3\right)^{101}=27^{101}\)
\(\Rightarrow2D+1=27^{101}=27^n\)
\(\Rightarrow n=101\)
Bác An đã được giảm giá số % là :
1,200,000 : 8,000,000 = 0,15 = 15%
Đ/S : .....................
Đặt A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200
Số số hạng của A:
200 - 101 + 1 = 100 (số hạng)
Ta có:
1/101 < 1/100
1/102 < 1/100
1/103 < 1/100
...
1/200 < 1/100
Cộng vế với vế, ta có:
1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200 < 1/100 + 1/100 + 1/100 + ... + 1/100
⇒ A < 100/100 = 1
Vậy A < 1
\(\dfrac{1}{101}\)+\(\)....+\(\dfrac{1}{200}\)<\(\dfrac{1}{101}\).(200-101+1)
=\(\dfrac{100}{101}\)<1
\(\dfrac{1}{101}\)
Đặt A = 1/4 + 1/(4.7) + 1/(7.10) + ... + 1/(94.97) + 1/(97.100)
= 1/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/94 - 1/97 + 1/97 - 1/100)
= 1/3 . (1 - 1/100)
= 1/3 - 1/300 < 1/3
Vậy A < 1/3
(2/3+2/7-1/14) / (-1-3/7+3/28)
=(2/3+2/7-2/28) / (-3/3-3/7+3/28)
=[2.(1/3+1/7-1/28)]/[(-3).(1/3+1/7-1/28)]
=2/-3=-2/3
a; \(\dfrac{122}{13}\) - (\(\dfrac{12}{5}\) + \(\dfrac{57}{13}\))
A = \(\dfrac{122}{13}\) - \(\dfrac{12}{5}\) - \(\dfrac{57}{13}\)
A = \(\dfrac{122}{13}\) - \(\dfrac{57}{13}\) - \(\dfrac{12}{5}\)
A = 5 - \(\dfrac{12}{5}\)
A = \(\dfrac{13}{5}\)
b; (\(\dfrac{4}{17}\) - \(\dfrac{4}{49}\) - \(\dfrac{4}{131}\)) : (\(\dfrac{3}{17}\) - \(\dfrac{3}{49}\) - \(\dfrac{3}{131}\))
= 4.(\(\dfrac{1}{17}-\dfrac{1}{49}-\dfrac{1}{131}\)) : [3.(\(\dfrac{1}{17}-\dfrac{1}{49}-\dfrac{1}{131}\))]
= \(\dfrac{4}{3}\)
a: \(\left(\dfrac{1}{17}-\dfrac{1}{57}+\dfrac{1}{23}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(=\left(\dfrac{1}{17}-\dfrac{1}{57}+\dfrac{1}{23}\right)\cdot\dfrac{3-2-1}{6}\)
=0
b: \(\left(\dfrac{17}{3}-\dfrac{29}{6}\right)+\dfrac{7}{6}=\dfrac{17}{3}-\dfrac{29}{6}+\dfrac{7}{6}\)
\(=\dfrac{17}{3}-\dfrac{22}{6}=\dfrac{17}{3}-\dfrac{11}{3}=\dfrac{6}{3}=2\)
a: \(1\dfrac{2}{5}+2\dfrac{3}{4}-4\dfrac{2}{5}\)
\(=1,4+2,75-4,4\)
\(=2,75-3=-0,25=-\dfrac{1}{4}\)
b: \(\dfrac{-2}{3}+\dfrac{4}{15}+\dfrac{1}{6}+\dfrac{4}{-9}+\dfrac{11}{15}\)
\(=\left(-\dfrac{2}{3}+\dfrac{1}{6}-\dfrac{4}{9}\right)+\left(\dfrac{4}{15}+\dfrac{11}{15}\right)\)
\(=1+\dfrac{-12+2-8}{18}\)
\(=1+\dfrac{-18}{18}\)
=1-1
=0
Có 4 giao điểm