K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

A B C H D E M

a/

Xét tg MAB và tg MEC có

MB=MC (gt); MA=ME (gt)

\(\widehat{AMB}=\widehat{EMC}\) (góc đối đỉnh)

=> tg MAB = tg MEC (c.g.c)

b/

Ta có  tg MAB = tg MEC (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CEM}\) 

Hai góc trên ở vị trí so le trong => AB//CE

c/

Xét tg vuông ABH và tg vuông DBH có

HA=HD (gt); BH chung => tg ABH = tg DBH (hai tg vuông có 2 cạnh góc vuông bằng nhau) => AB=BD(1)

Ta có tg MAB = tg MEC (cmt) => AB=CE (2)

Từ (1) và (2) => BD=CE

 

 

13 tháng 12 2023

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = MC

Xét ∆MAB và ∆MEC có:

BM = MC (cmt)

∠AMB = ∠EMC (đối đỉnh)

AM = ME (gt)

⇒ ∆MAB = ∆MEC (c-g-c)

b) Do ∆MAB = ∆MEC (cmt)

⇒ ∠MAB = ∠MEC (hai góc tương ứng)

Mà ∠MAB và ∠MEC là hai góc so le trong)

AB // CE

c) Xét hai tam giác vuông: ∆AHB và ∆DHB có:

BH là cạnh chung

AH = HD (gt)

⇒ ∆AHB = ∆DHB (hai cạnh góc vuông)

⇒ AB = BD (hai cạnh tương ứng)

Do ∆MAB = ∆MEC (cmt)

⇒ AB = CE (hai cạnh tương ứng)

Mà AB = BD (cmt)

⇒ BD = CE

13 tháng 12 2023

Sửa đề:

Tìm ba số a, b, c biết:

5a = 8b, b = 3c và a - 2b + c = 34

Giải:

5a = 8b ⇒ a/8 = b/5 ⇒ a/24 = b/15 (1)

b = 3c ⇒ b/3 = c/1 ⇒ b/15 = c/5 (2)

Từ (1) và (2) ⇒ a/24 = b/15 = c/5

⇒ a/24 = 2b/30 = c/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a/24 = 2b/30 = c/5 = (a - 2b + c)/(24 - 30 + 5) = 34/(-1) = -34

a/24 = -34 ⇒ a = -34.24 = -816

b/15 = -34 ⇒b = -34.15 = -510

c/5 = -34 ⇒ c = -34.5 = -170

Vậy a = -816; b = -510; c = -170

13 tháng 12 2023

.

DT
13 tháng 12 2023

Đặt x/6 = y/3 = k

=> x=6k và y = 3k

Ta có : xy = 3

=> 18k^2 = 3

=> k^2 = 1/6

=> k = ±√1/6 = ±√6 / 6

Vậy (x;y) = (√6;√6 /2);(-√6;-√6 /2)

13 tháng 12 2023

undefined tức là ko có variable ấy (nghĩa là ko tồn tại)

13 tháng 12 2023

x O y A C B D E

Ta có

OB=OA (gt); BD=AC (gt)

=> OB+BD=OA+AC => OD=OC

Xét tg AOD và tg BOC có

OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)

b/

Ta có tg AOD = tg BOC (cmt) 

\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)

\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)

\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)

Xét tg EAC và tg EBD có

\(\widehat{OAC}=\widehat{OBD}\) (cmt)

tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)

AC=BD (gt)

=> tg EAC = tg EBD (g.c.g)

c/

Xét tg OAE và tg OBE có

OA=OB (gt); OE chung

tg EAC = tg EBD (cmt) => AE=BE

=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)

Xét tg OCD có

OC=OD (cmt) => tg OCD cân tại O

\(\widehat{xOE}=\widehat{yOE}\) (cmt)

\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

 

 

DT
13 tháng 12 2023

\(2^{20\: }=\left(2^4\right)^{5\: }=\left(2.2.2.2\right)^5=16\&^5\)

DT
13 tháng 12 2023

\(16^5\) nha bạn.

DT
13 tháng 12 2023

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461

13 tháng 12 2023

Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11

Do N là số dương nhỏ nhất 

Nên N + 1 thuộc BCNN(2,3,7,11) 

Mà BCNN(2,3,7,11) = 2.3.7.11 = 462

Hay N+1 = 462

=> N = 461

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.

Có:

$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$

Vậy $y=\frac{1}{27}x$

$y_1=\frac{1}{27}x_1$

Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$

$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$

b. Đặt $y=kx$

$y_1=kx_1$

$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.

$\Rightarrow y_2=\frac{-2}{5}x_2$

Thay vào điều kiện $y_2-x_2=-7$ thì:

$\frac{-2}{5}x_2-x_2=-7$

$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$

$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$

13 tháng 12 2023

\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)

Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

12 tháng 12 2023

Đặt A=2^100 - 2^99+2^98-2^97+...+2^2-2 
     2A=2(2^100 - 2^99+2^98-2^97+...+2^2-2)
     2A=2^101 - 2^100 + 2^99-2^98+...+2^3-2^2
 2A+A=(2^101 - 2^100 + 2^99-2^98+...+2^3-2^2)+(2^100 - 2^99+2^98-2^97+...+2^2-2 )
 3A=2^101 - 2
   A=(2^101 - 2):3