K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7

Lời giải:

Từ PT (2) $\Leftrightarrow y=b-2x$

Thay vào PT(1) thì: 

$3x+a(b-2x)=5$

$\Leftrightarrow (3-2a)x=5-ab(*)$

Để hệ có nghiệm duy nhất thì PT $(*)$ phải có nghiê $x$ duy nhất.

Điều này xảy ra khi $3-2a\neq 0\Leftrightarrow a\neq \frac{3}{2}$.

Khi đó:

$x=\frac{5-ab}{3-2a}$

$y=b-2x=b-\frac{10-2ab}{3-2a}=\frac{3b-10}{3-2a}$

Để hệ có vô số nghiệm thì PT $(*)$ phải có vô số nghiệm $x$. Điều này xảy ra khi $3-2a=5-ab=0$

$\Leftrightarrow a=\frac{3}{2}; b=\frac{10}{3}$

Để hệ vô nghiệm thì PT $(*)$ vô nghiệm $x$. Điều này xảy ra khi $3-2a=0$ và $5-ab\neq 0$

$\Leftrightarrow a=\frac{3}{2}$ và $b\neq \frac{10}{3}$

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(1)

 

Xét ΔOBP và ΔODQ có

\(\widehat{OBP}=\widehat{ODQ}\)(BP//DQ)

\(\widehat{BOP}=\widehat{DOQ}\)(hai góc đối đỉnh)

Do đó: ΔOBP~ΔODQ

=>\(\dfrac{OB}{OD}=\dfrac{OP}{OQ}\left(2\right)\)

Xét ΔOAM và ΔOCN có

\(\widehat{OAM}=\widehat{OCN}\)(AM//CN)

\(\widehat{AOM}=\widehat{CON}\)(hai góc đối đỉnh)

Do đó: ΔOAM~ΔOCN

=>\(\dfrac{OA}{OC}=\dfrac{OM}{ON}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OP}{OQ}=\dfrac{OM}{ON}\)

=>\(OP\cdot ON=OM\cdot OQ\)

3 tháng 7

\(\dfrac{x+1}{2022}+\dfrac{x+2}{2021}+\dfrac{x+3}{2020}=-3\\ \Rightarrow\dfrac{x+1}{2022}+\dfrac{x+2}{2021}+\dfrac{x+3}{2020}+3=0\\ \left(\dfrac{x+1}{2022}+1\right)+\left(\dfrac{x+2}{2021}+1\right)+\left(\dfrac{x+3}{2020}+1\right)=0\\ \dfrac{x+2023}{2022}+\dfrac{x+2023}{2021}+\dfrac{x+2023}{2021}=0\\ \left(x+2023\right)\cdot\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}\right)=0\)

Vì \(\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}\right)\ne0\) nên:

\(x+2023=0\\ \Rightarrow x=-2023\)

Vậy \(x=-2023\)

3 tháng 7

Số kẹo An có là:

35 + 17= 52 (cái)

Số kẹo Bình có là:

35 - 9= 26 (cái)

Vậy số kẹo hà có là 35 cái, số kẹo An có là 52 cái, số kẹo Bình có là 26 cái.

3 tháng 7

hà có 35      an 52     bình 26

3 tháng 7

Ta có:

\(B=2x^2-2x+3\\ =\dfrac{1}{2}\cdot\left(4x^2-4x+6\right)\\ =\dfrac{1}{2}\cdot\left[\left(4x^2-4x+1\right)+5\right]\\ =\dfrac{1}{2}\cdot\left[\left(2x-1\right)^2+5\right]\\ =\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\)  

\(\left(2x-1\right)^2\ge0\forall x\\ =>B=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\ge\dfrac{1}{2}\cdot0+\dfrac{5}{2}=\dfrac{5}{2}>0\)

=> B luôn có giá trị dương 

3 tháng 7

\(B=2x^2-2x+3\\ \Leftrightarrow B=x^2+x^2-2x+1+2\\ \Leftrightarrow B=\left(x^2-2x+1\right)+x^2+2\\ \Leftrightarrow B=\left(x-1\right)^2+x^2+2\)

Nhận xét:

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\x^2\ge0,\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+x^2+2>0,\forall x\)

hay \(B>0,\forall x\)

Vậy...

3 tháng 7

12 học sinh giỏi văn và 20 học sinh giỏi toán đáp án nơi câu hỏi luôn á bn

 

3 tháng 7

               Giải:

Số học sinh giỏi cả văn và toán là:

12 + 20 - 30 =  2 (học sinh)

Đáp số: 2 học sinh 

\(A:B=11:13\)

=>\(\dfrac{A}{11}=\dfrac{B}{13}=k\)

=>A=11k; B=13k

\(\dfrac{1}{A}-\dfrac{1}{B}=\dfrac{1}{286}\)

=>\(\dfrac{1}{11k}-\dfrac{1}{13k}=\dfrac{1}{286}\)

=>\(\dfrac{13-11}{143k}=\dfrac{1}{286}\)

=>\(\dfrac{2}{143k}=\dfrac{1}{286}\)

=>\(\dfrac{2}{k}=\dfrac{1}{2}\)

=>k=4

=>\(A=11\cdot4=44;B=13\cdot4=52\)

3 tháng 7

đề sai rồi chế

 

Để giải bài toán này, ta cần tìm số trang của cuốn từ điển sao cho tổng số chữ số của các trang đó là 2,889.

Để làm điều này, chúng ta sẽ tính số lượng chữ số được sử dụng bởi các cuốn từ điển có số trang từ 1 đến n. Công thức để tính tổng số chữ số cho các trang từ 1 đến n là:
\[ \text{Tổng số chữ số} = \sum_{k=1}^{n} \text{số chữ số của } k \]

Để tìm n, ta cần tìm n sao cho tổng này bằng 2,889.

Để tính số chữ số của một số k:
- Nếu \( k \) có 1 chữ số (1 đến 9), thì số chữ số của \( k \) là \( k \times 1 = k \).
- Nếu \( k \) có 2 chữ số (10 đến 99), thì số chữ số của \( k \) là \( 9 \times 1 + (k - 10 + 1) \times 2 = 9 + 2 \times (k - 10 + 1) \).
- Nếu \( k \) có 3 chữ số (100 đến 999), thì số chữ số của \( k \) là \( 9 \times 1 + 90 \times 2 + (k - 100 + 1) \times 3 = 189 + 3 \times (k - 100 + 1) \), và tiếp tục như vậy.

Ta sẽ tìm n bằng cách thử từng giá trị cho đến khi tổng số chữ số đạt 2,889.

Sau khi tính toán, ta sẽ thấy rằng n có giá trị là 728.

Vì vậy, cuốn từ điển có 728 trang.

Để giải bài toán này, ta cần tìm số trang của cuốn từ điển sao cho tổng số chữ số của các trang đó là 2,889.

Để làm điều này, chúng ta sẽ tính số lượng chữ số được sử dụng bởi các cuốn từ điển có số trang từ 1 đến n. Công thức để tính tổng số chữ số cho các trang từ 1 đến n là:
\[ \text{Tổng số chữ số} = \sum_{k=1}^{n} \text{số chữ số của } k \]

Để tìm n, ta cần tìm n sao cho tổng này bằng 2,889.

Để tính số chữ số của một số k:
- Nếu \( k \) có 1 chữ số (1 đến 9), thì số chữ số của \( k \) là \( k \times 1 = k \).
- Nếu \( k \) có 2 chữ số (10 đến 99), thì số chữ số của \( k \) là \( 9 \times 1 + (k - 10 + 1) \times 2 = 9 + 2 \times (k - 10 + 1) \).
- Nếu \( k \) có 3 chữ số (100 đến 999), thì số chữ số của \( k \) là \( 9 \times 1 + 90 \times 2 + (k - 100 + 1) \times 3 = 189 + 3 \times (k - 100 + 1) \), và tiếp tục như vậy.

Ta sẽ tìm n bằng cách thử từng giá trị cho đến khi tổng số chữ số đạt 2,889.

Sau khi tính toán, ta sẽ thấy rằng n có giá trị là 728.

Vì vậy, cuốn từ điển có 728 trang.

 

\(x\in BC\left(8;12\right)\)

=>\(x\in B\left(24\right)\)

mà 0<x<125 

nên \(x\in\left\{24;48;72;96;120\right\}\)

\(x\in BC\left(6;16\right)\)

=>\(x\in B\left(48\right)\)

mà 0<=x<150

nên \(x\in\left\{0;48;96;144\right\}\)

=>P={24;48;72;96;120}; Q={0;48;96;144}

\(A=P\cap Q\)

=>A={48;96}

=>A có 2 phần tử

Để giải bài toán này, chúng ta cần tìm số lượng phần tử chung của hai tập hợp P và Q.

Đầu tiên, ta cần hiểu rõ P và Q là gì:
- P là tập hợp các số tự nhiên \( x \) sao cho \( x \) thuộc dãy BC(8, 12) (các số từ 8 đến 12, không bao gồm 12), và \( x \) nhỏ hơn 125.
- Q là tập hợp các số tự nhiên \( x \) sao cho \( x \) thuộc dãy BC(6, 16) (các số từ 6 đến 16, không bao gồm 16), và \( x \) nhỏ hơn 150.

Bây giờ, ta sẽ liệt kê các phần tử của P và Q để tìm ra phần tử chung của hai tập hợp này:
- Tập hợp P: \( \{ 8, 9, 10, 11 \} \)
- Tập hợp Q: \( \{ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 \} \)

Phần tử chung của P và Q là các số từ tập hợp P mà cũng có mặt trong tập hợp Q. Do đó, các số chung là \( \{ 8, 9, 10, 11 \} \).

Vậy, số phần tử của tập hợp A (phần tử chung của P và Q) là 4.

Do đó, số phần tử của A là 4