tam giác abc vg tại a ab<ac có dg cao ah trung tuyến am từ h kẻ he vuông góc ab, hf vuông ac. a, ae.ab=af.ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn nhớ dùng công thức toán cho dễ đọc nhé (chính là biểu tượng \(\Sigma\) ở góc trên bên trái khung soạn thảo)
Ở đây mình viết có gì sai thì bạn sửa lại nhé :)))
a) \(3-\sqrt{x^2+3}=0\) \(\Leftrightarrow\sqrt{x^2+3}=3\) \(\Leftrightarrow x^2+3=9\) \(\Leftrightarrow x^2=6\) \(\Leftrightarrow x=\pm\sqrt{6}\)
Vậy \(S=\left\{\pm\sqrt{6}\right\}\)
b) \(1-\sqrt{4x^2-20x+25}=0\) \(\Leftrightarrow1-\sqrt{\left(2x-5\right)^2}=0\) \(\Leftrightarrow\left|2x-5\right|=1\) (*)
Khi \(2x-5\ge0\Leftrightarrow x\ge\dfrac{5}{2}\) thì (*) \(\Leftrightarrow2x-5=1\Leftrightarrow2x=6\Leftrightarrow x=3\) (nhận)
Khi \(2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\) thì (*) \(\Leftrightarrow5-2x=1\Leftrightarrow2x=4\Leftrightarrow x=2\) (nhận)
Vậy \(S=\left\{2;3\right\}\)
c) \(\sqrt{x^2-6x+9}-x=0\Leftrightarrow\sqrt{\left(x-3\right)^2}-x=0\)\(\Leftrightarrow\left|x-3\right|-x=0\) (*)
Khi \(x-3\ge0\Leftrightarrow x\ge3\) thì (*) \(\Leftrightarrow x-3-x=0\Leftrightarrow-3=0\) (vô lí)
Khi \(x-3< 0\Leftrightarrow x< 3\) thì (*) \(\Leftrightarrow3-x-x=0\Leftrightarrow2x=3\Leftrightarrow x=\dfrac{3}{2}\) (nhận)
Vậy \(S=\left\{\dfrac{3}{2}\right\}\)
d) \(x-2\sqrt{x-1}=16\) \(\left(đk:x\ge1\right)\)
\(\Leftrightarrow\left(x-1\right)-2\sqrt{x-1}-15=0\) (*)
Đặt \(\sqrt{x-1}=p\left(p\ge0\right)\) thì (*) trở thành \(p^2-2p-15=0\) (1)
pt (1) có \(\Delta'=\left(-1\right)^2-\left(-15\right)=16>0\) nên pt (1) có nghiệm:
\(p=\dfrac{-\left(-1\right)\pm\sqrt{16}}{1}=1\pm4\Leftrightarrow\left[{}\begin{matrix}p=5\left(nhận\right)\\p=-3\left(loại\right)\end{matrix}\right.\)
Do đó \(p=5\Rightarrow\sqrt{x-1}=5\Leftrightarrow x-1=25\Leftrightarrow x=26\left(nhận\right)\)
Vậy \(S=\left\{26\right\}\)
a/ Xét tg ABC
\(\widehat{BAC}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
=> tg ABC vuông tại A
b/
Xét tg vuông ABC
\(AC=\sqrt{BC^2-AB^2}=\sqrt{4a^2-a^2}=a\sqrt{3}\) (Pitago)
\(AC^2=HC.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{3a^2}{2a}=\dfrac{3a}{2}\)
Xét tg vuông AHC có
\(AH=\sqrt{AC^2-HC^2}\) (Pitago)
\(AH=\sqrt{3a^2-\dfrac{9a^2}{4}}=\sqrt{\dfrac{3a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)
c/
\(HB=BC-HC=2a-\dfrac{3a}{2}=\dfrac{a}{2}\)
\(HB+HC=BC=2a\) không đổi
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hah từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
AH lớn nhất khi \(AH^2\) lớn nhất
Ta có tổng 2 số không đổi thì tích của chúng lớn nhất khi 2 số = nhau)
=> AH lớn nhất khi HB=HC
Hoặc có thể dùng bất đẳng thức cauchy để c/m
Do \(2\le a\le6\Rightarrow\sqrt{a-2}\ge0;\sqrt{a-2}+2\ge0;\sqrt{a-2}-2\le0\)\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}=\sqrt{\left(a-2\right)+4\sqrt{a-2}+4}+\sqrt{\left(a-2\right)-4\sqrt{a-2}+4}=\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|=\sqrt{a-2}+2-\left(\sqrt{a-2}-2\right)=4\left(đpcm\right)\)
\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}\)
\(\Leftrightarrow\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\)
Theo BĐT Cosi ta có \(\left|\sqrt{a-2}+2\right|+\left|\sqrt{a-2}-2\right|\ge\left|\sqrt{a-2}+2+2-\sqrt{a-2}\right|=4\)
Dấu ''='' xảy ra khi 2 =< a =< 6
a, y = -x + 2b - 5 (d')
(d') đi qua A(-3;4) <=> 4 = 3 + 2b - 5 <=> 2b = 6 <=> b = 3
b, Cho điểm giao giữa (d) ; (d') là A(3a;a) với a là tung độ
(d) đi qua A(3a;a) <=> a = 6a - 3 <=> -5a = -3 <=> a = 3/5
=> A(9/5;3/5) đi qua (d') \(\dfrac{3}{5}=-\dfrac{9}{5}+2b-5\Leftrightarrow\dfrac{12}{5}+5=2b\Leftrightarrow b=\dfrac{37}{10}\)
Hình bạn tự vẽ nhé
a) Dễ dàng tính được \(BC=HB+HC=2+6=8\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH nên \(AB^2=BH.BC\left(htl\right)\Rightarrow AB=\sqrt{BH.BC}=\sqrt{2.8}=4\left(cm\right)\)
Tương tự, ta có \(AC^2=CH.BC\Rightarrow AC=\sqrt{CH.BC}=\sqrt{6.8}=4\sqrt{3}\left(cm\right)\)
Mặt khác theo htl:\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{4.4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
b) Tam giác ABH vuông tại H có đường cao HD nên \(AH^2=AD.AB\left(htl\right)\)
Tương tự, ta có \(AH^2=AE.AC\), từ đó \(AD.AB=AE.AC\left(=AH^2\right)\) (đpcm)
c) Ta có \(AD.AB=AE.AC\left(cmt\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét \(\Delta AED\) và \(\Delta ABC\), ta có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\left(cmt\right);\) \(\widehat{A}\) chung
\(\Rightarrow\Delta AED~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{ADE}=\widehat{ACB}\) hay \(\widehat{ADE}=\widehat{BCE}\)
Mà \(\widehat{ADE}+\widehat{BDE}=180^o\) \(\Rightarrowđpcm\)
Dùng cách phân tích thành nhân tử, ta có thể viết phương trình như sau :
\(x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
hay \(\left(x-4\right)\left(x^3-19x+30\right)=0\)
\(\left(x-4\right)\left(x^3-3x^2-9x-10x+30\right)=0\)
Ta được phương trình tích sau : \(\left(x-4\right)\left(x-3\right)\left(x^2-3x-10\right)=0\)
\(S=x_1=4;x_2=3;x_i=2;x_4=-5\)
\(\dfrac{x}{1}+\dfrac{x}{1+2}+\dfrac{x}{1+2+3}+...+\dfrac{x}{1+2+3+...+4041}=4041\)
<=> \(x\left(1+\dfrac{1}{\dfrac{2.3}{2}}+\dfrac{1}{\dfrac{3.4}{2}}+...+\dfrac{1}{\dfrac{4041.4042}{2}}\right)=4041\)
<=> \(2x\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{4041.4042}\right)=4041\)
<=> \(2x\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{4041}-\dfrac{1}{4042}\right)=4041\)
<=> \(2x\left(1-\dfrac{1}{4042}\right)=4041\)
<=> \(\dfrac{4041x}{2021}=4041\Leftrightarrow x=2021\)
\(=x\times\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+4041}\right)=4041\Leftrightarrow x\times\left(\dfrac{2}{2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+...+\dfrac{2}{4041\times4042}\right)=4041\Leftrightarrow2x\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{4041\times4042}\right)=4041\Leftrightarrow x\times(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{4041}-\dfrac{1}{4042})=\dfrac{4041}{2}\Leftrightarrow x\times\left(1-\dfrac{1}{4042}\right)=\dfrac{4041}{2}\Leftrightarrow x\times\dfrac{4041}{4042}=\dfrac{4041}{2}\Leftrightarrow x=\dfrac{4041}{2}:\dfrac{4041}{4042}\Leftrightarrow x=2021\)Vậy x = 2021
Em mới lớp 8 nên ko bt có chỗ nào sai hay ko mong anh/chị bỏ qua
Xét \(\Delta AEH\) và \(\Delta AHB\), ta có:
\(\widehat{A}\) chung
\(\widehat{AEH}=\widehat{AHB}=90^o\)
\(\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
\(\Rightarrow AE.AB=AH^2\) (*)
Xét \(\Delta AFH\) và \(\Delta AHC\), ta có:
\(\widehat{A}\) chung
\(\widehat{AFH}=\widehat{AHC}=90^o\)
\(\Rightarrow\Delta AFH~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\dfrac{AF}{AH}=\dfrac{AH}{AC}\)
\(\Rightarrow AF.AC=AH^2\) (**)
Từ (*)(**)\(\Rightarrow AE.AB=AF.AC\)