K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2022

Có AH là đường cao của Δ ABC (gt)

=> AH ⊥ BC tại H 

=> Δ ABH vuông tại H 

=> \(AB^2=AH^2+BH^2\) (py-ta-go)

=> BH² = AB² – AH² = 36 – (4,8)² = 12,96

=> BH = 3,6 cm 

áp dụng hệ thức lượng trong Δ ABC ta có 

AB² = BH.BC 

=> \(BC=\dfrac{AB^2}{BH}=\dfrac{36}{3,6}=10cm\)

khi đó diện tích \(\Delta ABC=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.4,8.10=24cm^2\)

20 tháng 7 2022

Cách 2:

Áp dụng hệ thức lượng trong Δ ABC ta có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay \(AH^2=\dfrac{AB^2.AC^2}{AB^2+AC^2}\)

=>\(\left(4,8\right)^2=\dfrac{36.AC^2}{36+AC^2}\)

=> AC =8  cm 

Khi đó diện tích\(\Delta ABC=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24cm^2\)

20 tháng 7 2022

a) Xét (O) có \(\widehat{DBC}\) và \(\widehat{DAB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{BC}\) nên ta có \(\widehat{DBC}=\widehat{DAB}\). Từ đó, ta dễ dàng chứng minh \(\Delta DBC~\Delta DAB\left(g.g\right)\) \(\Rightarrow\dfrac{DC}{DB}=\dfrac{DB}{DA}\) \(\Rightarrow BD^2=AD.CD\) (đpcm)

b) Gọi I là giao điểm của BD và CE.

Xét (O) có 2 tiếp tuyến tại B và C cắt nhau tại I nên \(IB=IC\), dẫn đến tam giác IBC cân tại I, từ đó \(\widehat{IBC}=\widehat{ICB}\) (1)

Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\) \(\Rightarrow180^o-\widehat{ABC}=180^o-\widehat{ACB}\) \(\Rightarrow\widehat{EBC}=\widehat{DCB}\) (2)

Từ (1) và (2), ta có \(\widehat{EBC}-\widehat{IBC}=\widehat{DCB}-\widehat{ICB}\) \(\Rightarrow\widehat{DBE}=\widehat{DCE}\)

Từ đó dễ dàng chứng minh tứ giác BCDE nội tiếp.

c) Tứ giác BCDE nội tiếp nên \(\widehat{EBC}+\widehat{CDE}=180^o\)

Mà \(\widehat{EBC}=\widehat{DCB}\) nên \(\widehat{DCB}+\widehat{CDE}=180^o\) \(\Rightarrow BC//DE\) (2 góc trong cùng phía bù nhau)

20 tháng 7 2022

(3+1):2 + 4x5 = 22

4x5 +3-2+1 = 22

20 tháng 7 2022

câu trả lời số 2 của bạn hai dấu cộng kìa

20 tháng 7 2022

\(a,b,c\ge1\) chứ nhỉ?

\(a^5+b^5+c^5\ge a+b+c\)

 

\(\Leftrightarrow a^5+b^5+c^5-a-b-c\ge0\)

\(\Leftrightarrow a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\ge0\)

- Điều này đúng do \(a,b,c\ge1\)

- Vậy BĐT đã được c/m.

 

 

20 tháng 7 2022

Với \(a > 0,a \ne 1\) có:

\(\dfrac{(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1})}{\dfrac{\sqrt{a}}{\sqrt{a}+1}}\)

\(=(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{(\sqrt{a}+2)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-1)(\sqrt{a}+1)^2}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{a-\sqrt{a}+2\sqrt{a}-2-a-\sqrt{a}+2\sqrt{a}+2}{(\sqrt{a}-1)(\sqrt{a}+1)}.\dfrac{1}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}}{a-1}.\dfrac{1}{\sqrt{a}}=\dfrac{2}{a-1}\)

20 tháng 7 2022

Ta có \(\sqrt{16-6\sqrt{7}}=\sqrt{9-2.3.\sqrt{7}+7}\) \(=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)

Và \(\sqrt{29-4\sqrt{7}}=\sqrt{28-2.2\sqrt{7}+1}\) \(=\sqrt{\left(2\sqrt{7}-1\right)^2}=2\sqrt{7}-1\)

Do đó biểu thức đã cho bằng \(\left(3-\sqrt{7}\right)-\left(2\sqrt{7}-1\right)=4-3\sqrt{7}\)

\(\dfrac{1}{P}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{2.\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=2-\dfrac{2}{\sqrt{x}+1}\)(\(x>0;\sqrt{x}+1>1\))

\(\dfrac{1}{P}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) (do mẫu thức lớn hơn 1 nên có thế làm  theo cách này)theo điều kiện ta chỉ có 1 TH:

\(\sqrt{x}+1=2\Leftrightarrow x=1\left(TM\right)\)

vậy.............

 

19 tháng 7 2022

\(P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

\(\Rightarrow\dfrac{1}{P}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{2\sqrt{x}+2-2}{\sqrt{x}+1}=2-\dfrac{2}{\sqrt{x}+1}\)

Để \(\dfrac{1}{P}\) nguyên

\(\Leftrightarrow\sqrt{x}+1\in\text{Ư}\left(2\right)\)

Ta có bảng : 

                            \(\sqrt{x}+1\)    1   -1  2      -2
                               x    0   Không có  1     không có