a) ( x + 1 ) (x^2 - 4 ) = 0
b)(x-2) ( x^2+1 ) = 0
c) 13. ( x - 5 ) = -169
d) x. ( x - 2 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+...+2^{12}\)
\(\Rightarrow2A=2^2+2^3+...+2^{13}\)
\(\Rightarrow A=2A-A=\left(2^2+2^3+...+2^{13}\right)-\left(2+2^2+...+2^{12}\right)\)
\(=2^{13}-2\)
\(\Rightarrow A+2=2^{13}-2+2=2^{13}\)
Mà \(A+2=2^x\)
\(\Rightarrow2^x=2^{13}\)
\(\Rightarrow x=13\)
Gọi \(x\left(m\right)\) là độ dài khu vườn lúc đầu \(\left(x>0\right)\)
Độ dài khu vườn sau khi mở rộng: \(x+2\left(m\right)\)
Diện tích khu vườn lúc đầu: \(x^2\left(m^2\right)\)
Diện tích khu vườn lúc sau: \(\left(x+2\right)^2\left(m^2\right)\)
Theo đề bài, ta có:
\(\left(x+2\right)^2-x^2=80\)
\(\left(x+2\right).\left(x+2\right)-x^2=80\)
\(\left(x+2\right).x+\left(x+2\right).2-x^2=80\)
\(x^2+2x+2x+4-x^2=80\)
\(4x=80-4\)
\(4x=76\)
\(x=76:4\)
\(x=19\) (nhận)
Độ dài cạnh khu vườn sau khi mở rộng:
\(19+2=21\left(m\right)\)
Chu vi khu vườn sau khi mở rộng:
\(21.4=84\left(m\right)\)
Số cây hoa hồng trồng xung quanh khu vườn:
\(81:1=84\) (cây)
Số tiền mua hoa hồng:
\(84.120000=1008000\) (đồng)
Số số hạng của P:
\(90-1+1=90\) (số hạng)
Do \(90⋮3\) nên ta có thể nhóm các số hạng của P thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
\(P=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{88}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{88}.13\)
\(=13.\left(3+3^4+...+3^{88}\right)⋮13\)
Vậy \(P⋮13\)
Giải 1 : (269 + 179 + 3) - (269+ 179 + 2) = (269 - 269) + (179 - 179) + (3 - 2) = 0 + 0 + 1 = 1
Giải 2 : (37 - 382) - (26 - 382 + 37) = 37 - 382 - 26 + 382 - 37 = (37 - 37) + (-382 + 382) - 26 = 0 + 0 - 26 = -26
Kết quả:
Bài 1:
(269 + 179 + 3) - (269 - 179 + 2)
= 269 + 179 + 3 - 269 - 179 - 2
= (269 - 269) + (179 - 179) + (3 - 2)
= 0 + 0 +1
= 1
Tìm bội chung nhỏ nhất: Để giải bài toán này, ta cần tìm bội chung nhỏ nhất (BCNN) của 10, 12 và 23.
Tìm số cần tìm:
Kết luận:
Số tự nhiên lớn nhất có 3 chữ số thỏa mãn điều kiện là 2763.
Chia 23 dư 8 chứ sao lại dư 8 và 19 được em ơi?
Bước 1: Tìm bội chung nhỏ nhất
Bước 2: Tìm số cần tìm
Kết luận:
Số tự nhiên nhỏ nhất thỏa mãn các điều kiện của bài toán là 598.
Gọi x là số học sinh lớp 6A (x e N*, x<45 học sinh) Khi xếp thành hàng 2, hàng 3, hàng 7 thì đều vừa đủ hàng nên x chia hết cho 2,x chia hết cho 3, x chia hết cho 7 Suy ra: x e BC ( 2;3;7) Ta có : 2 = 2 3 = 3 7 = 7 BCNN (2;3;7) = 2 . 3 . 7 = 42 BC(2;3;7) = B(42) = { 0; 42; 84;...} Mà x<45 nên x = 42 Vậy lớp 6A có 42 học sinh
Gọi x là số học sinh lớp 6A (x e N*, x<45 học sinh) Khi xếp thành hàng 2, hàng 3, hàng 7 thì đều vừa đủ hàng Nên x chia hết cho 2,x chia hết cho 3, x chia hết cho 7 Suy ra: x e BC ( 2;3;7) Ta có : 2 = 2 3 = 3 7 = 7 BCNN (2;3;7) = 2 . 3 . 7 = 42 BC(2;3;7) = B(42) = { 0; 42; 84;...} Mà x<45 nên x = 42 Vậy lớp 6A có 42 học sinh
\(56=2^3\cdot7;48=2^4\cdot3;40=2^3\cdot5\)
=>\(ƯCLN\left(56;48;40\right)=2^3=8\)
Để có thể cắt ba tấm gỗ có độ dài lần lượt là 56dm;48dm;40dm thành các tấm gỗ có độ dài như nhau thì độ dài của tấm gỗ được cắt phải là ước chung của 56;48;40
=>Độ dài lớn nhất có thể của tấm gỗ được cắt ra là
ƯCLN(56;48;40)=8(dm)
Giải:
Để các thanh gỗ được cắt thành các đoạn có độ dài như nhau thì độ dài của mỗi đoạn là ước chung của 56; 48; 40
Vì các đoạn được cắt có độ dài lớn nhất nên độ dài các đoạn là ước chung lớn nhất của 56, 48, 40
56 = 23.7; 48 = 24.3; 40 = 23.5
ƯCLN(56; 48; 40) = 23 = 8
Vậy ba thanh gỗ sẽ được cắt thành các đoạn bằng nhau sao cho mỗi đoạn có độ dài 8 dm.
2:
a: \(-3\in Z\)
b: \(0\in Z\)
c: \(4\in Z\)
d: \(-2\notin N\)
6: 3<5; -1>-3; -5<2; 5>-3
4:
a: Vì A nằm ở điểm -2 và O nằm ở điểm 0 nên khoảng cách từ điểm O đến điểm A là:
|-2-0|=|-2|=2
b: Các điểm cách O một khoảng bằng 5 đơn vị trên trục số là các điểm ở vị trí số -5 và số 5
a; (\(x+1\))(\(x^2\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x^{ }=-2\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {-1; -2; 2}
b; (\(x\) - 2).(\(x^2\) + 1) = 0
Vì \(x^2\) ≥ 0 ∀ \(x\); \(x\)2 + 1 ≥ 1 > 0 ∀ \(x\)
⇒ \(x-2\) = 0 ⇒ \(x\) = 2
Vậy \(x=2\)
c; 13.(\(x-5\)) = - 169
\(x-5\) = 169 : 13
\(x-5\) = -13
\(x=-13+5\)
Vậy \(x=-8\);
d; \(x.\left(x-2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\) {0; 2}
khó quá