K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \). **Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)** Sử dụng đồng nhất thức cơ bản: \[ \sin^2(x) + \cos^2(x) = 1 \] Và: \[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \] \[ = 1 - 2\sin^2(x)\cos^2(x) \] Sử dụng tiếp...
Đọc tiếp

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \).

**Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)**

Sử dụng đồng nhất thức cơ bản:
\[ \sin^2(x) + \cos^2(x) = 1 \]
Và:
\[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \]
\[ = 1 - 2\sin^2(x)\cos^2(x) \]

Sử dụng tiếp đồng nhất thức:
\[ \sin^2(x)\cos^2(x) = \left(\frac{\sin(2x)}{2}\right)^2 = \frac{\sin^2(2x)}{4} \]

Do đó:
\[ M = 1 - 2\cdot\frac{\sin^2(2x)}{4} = 1 - \frac{\sin^2(2x)}{2} \]

**Bước 2: Tìm giá trị nhỏ nhất và lớn nhất của \( M = 1 - \frac{\sin^2(2x)}{2} \)**

Biểu thức \(\sin^2(2x)\) có giá trị từ 0 đến 1, do đó:
\[ 0 \leq \sin^2(2x) \leq 1 \]

Áp dụng vào biểu thức \( M \):
\[ M = 1 - \frac{\sin^2(2x)}{2} \]
Khi \(\sin^2(2x) = 0\):
\[ M = 1 - 0 = 1 \]

Khi \(\sin^2(2x) = 1\):
\[ M = 1 - \frac{1}{2} = \frac{1}{2} \]

Vậy:
\[ m = \frac{1}{2} \]
\[ M = 1 \]

**Bước 3: Tính giá trị của \( P \)**

\[ P = 2m + M^2 + 2024 \]
\[ P = 2 \cdot \frac{1}{2} + 1^2 + 2024 \]
\[ P = 1 + 1 + 2024 \]
\[ P = 2026 \]

Vậy, giá trị của \( P \) là \( 2026 \). Nếu bạn có thêm bất kỳ câu hỏi nào hoặc cần hỗ trợ thêm, đừng ngần ngại hỏi nhé! 😊

 

0

Sửa đề: Với a<=m<b thì tập hợp A giao F khác tập rỗng

Để A\(\cap\)F=∅ thì \(\left[\begin{array}{l}2m+9<0\\ 2m-1\ge5\end{array}\right.\Rightarrow\left[\begin{array}{l}2m<-9\\ 2m\ge6\end{array}\right.\Rightarrow\left[\begin{array}{l}m<-\frac92\\ m\ge3\end{array}\right.\)

=>Để A giao F khác rỗng thì \(-\frac92\le m<3\)

=>a=-9/2; b=3

\(P=2a+5b=2\cdot\frac{-9}{2}+5\cdot3=-9+15=6\)

23 tháng 10 2024

\(sin^2x+cos^2x=1\)

=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)

mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))

nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)

15 tháng 10 2024

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)

=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)

Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)

nên ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)

Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)

=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)

=>\(R\simeq5,22\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)

\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)

Gọi số phần tử của B là x

(Điều kiện: x∈\(N^{\star}\) )

Để B có đúng 2 tập con thì \(2^{x}=2\)

=>x=1

=>B có duy nhất 1 phần tử

\(x^2-2\left(m+1\right)x+m+3=0\) (1)

\(\Delta=\left\lbrack2\left(m+1\right)\right\rbrack^2-4\left(m+3\right)\)

\(=4\left(m+1\right)^2-4\left(m+3\right)\)

\(=4\left(m^2+2m+1-m-3\right)=4\left(m^2+m-2\right)\)

=4(m+2)(m-1)

Để B có 1 phần tử duy nhất thì phương trình (1) có duy nhất 1 nghiệm

=>Δ=0

=>(m+2)(m-1)=0

=>\(\left[\begin{array}{l}m+2=0\\ m-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-2\\ m=1\end{array}\right.\)

Khi m=-2 thì (1) sẽ trở thành:

\(x^2-2\left(-2+1\right)x+\left(-2\right)+3=0\)

=>\(x^2+2x+1=0\)

\(\) =>\(\left(x+1\right)^2=0\)

=>x+1=0

=>x=-1

mà -1 không thuộc [1;8]

nên Loại

Khi m=1 thì (1) sẽ trở thành:

\(x^2-2\left(1+1\right)x+1+3=0\)

=>\(x^2-4x+4=0\)

=>\(\left(x-2\right)^2=0\)

=>x-2=0

=>x=2∈[1;8]

=>Nhận

=>m=1 là giá trị m nguyên duy nhất thỏa mãn yêu cầu đề bài

=>Có 1 giá trị m thỏa mãn

NV
28 tháng 9 2024

Đề ko đúng rồi em, dữ kiện cuối là góc thì phải có 3 điểm chứ

18 tháng 8 2024

Mình cũng ko biết 

18 tháng 8 2024

`->` Chưa đúng.

`-` Xét:

`+` Hai cặp cạnh đối song song.

`+` Hai cặp cạnh đối bằng nhau.

`+` Hai cặp góc đối bằng nhau.

`+` Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

`+` Một cặp cạnh đối vừa song song vừa bằng nhau.