Phân tích đa thức thành nhân tử:
a(b+c)2+b(a+c)2+c(a+b)2-4abc
Hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C M M M D D D E E E
Do E đối xứng với M qua AC nên AC là đường trung trực EM.
Do đó AE = AM (1). Tương tự AD = AM (2)
Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)
*Chứng minh A, E, D thẳng hàng
Theo (1) thì AE = AM -> tam giác AEM cân tại A.
Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)
Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)
Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED
Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)
Đẳng thức xảy ra khi M trùng H.
Do đó \(ED\ge2AM\ge2AH=const\)
Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.
P/s: Mới học dạng này nên ko chắc..
A C B D x y O
1) Xét tứ giác ABCD có :
\(\hept{\begin{cases}BD//AC\left(Bx//AC\right)\\AB//CD\left(AB//Cy\right)\end{cases}}\)=> ABCD là hình bình hành
=> AB = CD
2) Vì ABCD là hình bình hành
=> AD và BC cắt nhau tại trung điểm của mỗi đường ( Tính Chất )
Mà O là trung điểm của BC
=> O là trung điểm của AD
=> O , A , D thẳng hàng ( Đpcm )
TL :
Tham khảo tại : https://olm.vn/hoi-dap/detail/226772144064.html
Hok tốt