1. Cho tam giác ABC và điểm I thuộc đường cao AH. Gọi M, N, P, Q, lần lượt là TĐ của AB, AC, CI, BI. CM: MNPQ là hình chữ nhật 2. Cho tứ giác ABCD có AC vuông góc BD. Gọi M, N, P, Q lần lượt là TĐ AB, BC, CD, DA. Tứ giác MNPQ là hình gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{x^3-x^2+2x+7}{x^2+1}=x-1+\frac{x+8}{x^2+1}\)
Đặt
\(A=\frac{x+8}{x^2+1}\)
\(\Leftrightarrow\left(x-8\right)A=\frac{x^2-64}{x^2+1}=1-\frac{65}{x^2+1}\)
Để A nguyên thì \(x^2+1\)phải là ước của 65. Làm nốt
\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\left(x-2\right)\left(-4\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)