K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sai đề nha bạn, 2 số dưới mẫu cuối cùng là \(\sqrt{79}\) và \(\sqrt{80}\) mới theo quy luật 

Nhận xét: với mọi \(a\inℕ^∗\) ta có : 

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a+1}+\sqrt{a}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{a-1}+\sqrt{a}}=\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a-1}+\sqrt{a}}>\frac{1}{\sqrt{a-1}+\sqrt{a}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}\)

\(=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a-1}+\sqrt{a}\right)\left(\sqrt{a}-\sqrt{a-1}\right)}+\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a+1}+\sqrt{a}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}\)

\(=\sqrt{a}-\sqrt{a-1}+\sqrt{a+1}-\sqrt{a}=\sqrt{a+1}-\sqrt{a-1}\)

\(\Rightarrow\)\(2B=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+\frac{2}{\sqrt{5}+\sqrt{6}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)

\(>\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{81}-\sqrt{79}\)

\(=\sqrt{81}-1=9-1=8\)

\(2B>8\)\(\Rightarrow\)\(B>\frac{8}{2}=4\) ( đpcm ) 

... 

14 tháng 12 2018

à ừ cảm ơn bạn nhìu nha

7 + 5 + 2004 =  2016

girl 2k6

Học tốt!!!

14 tháng 12 2018

=2016

oh , thik ra trước giờ mk là nam

~G2k6~

14 tháng 12 2018

help meeeeeeeeeeeeeeeeeeeeeeee!!!