cho mình hỏi là đổi tên đại diện kiểu j ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
xét 2 tam giác AMB và DMC
có AM = DM ( gt )
góc DMC = góc AMB ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác AMB = tam giác DMC ( c.g.c ) ( đpcm )
b, xét hai tam giác AMC và DMB
có AM = DM ( gt )
góc DMB = góc AMC ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác AMC = ta giác DMB ( c.g.c )
=> góc DBM = góc ACM ( 2 góc tương ứng )
mà 2 góc trên nằm ở vị trí so le trong của 2 đt AC và BD
=> AC // BD ( đpcm )
c, từ b có
tam giác AMC = tam giác DMB ( c.g.c )
=> AC = BD ( 2 cạnh tương ứng )
và góc DBM = góc ACM ( 2 góc tương ứng )
xét hai tam giác AKC và BHD
có góc BHD = góc CKA = 90 độ
AC = BD (cmt)
góc DBM = góc ACM ( cmt )
=> tam giác AKC = tam giác BHD ( cạnh huyền - govs nhọn )
=> BH = CK ( 2 cạnh tương ứng )(đpcm )
a) Do M là trung điểm của BC (gt)
⇒ MB = MC
Xét ∆MAB và ∆MDC có:
MA = MD (gt)
∠AMB = ∠DMC (đối đỉnh)
MB = MC (cmt)
⇒ ∆MAB = ∆MDC (c-g-c)
b) Do ∆MAB = ∆MDC (cmt)
⇒ ∠MAB = ∠MDC (hai góc tương ứng)
Mà ∠MAB và ∠MDC là hai góc so le trong
⇒ AB // CD
c) Do MA = MD (gt)
⇒ AD = 2AM
Do ∆ABC vuông tại A (gt)
⇒ AB ⊥ AC
Mà AB // CD (cmt)
⇒ CD ⊥ AC
⇒ ∆CDA vuông tại C
Do ∆MAB = ∆MDC (cmt)
⇒ AB = CD (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆ABC và ∆CDA có:
AC là cạnh chung
AB = CD (cmt)
⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)
⇒ BC = AD (hai cạnh tương ứng)
Mà AD = 2AM (cmt)
⇒ BC = 2AM
d) Xét ∆MAC và ∆MDB có:
MA = MD (gt)
∠AMC = ∠DMB (đối đỉnh)
MC = MB (cmt)
⇒ ∆MAC = ∆MDB (c-g-c)
⇒ ∠MAC = ∠MDB (hai góc tương ứng)
Mà ∠MAC và ∠MDB là hai góc so le trong
⇒ AC // BD
Mà AC ⊥ AB (cmt)
⇒ AB ⊥ BD
21.x = 19.y và x-y=4
Hay x/21 = y/19 và x - y = 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
x/21 = y/19 = x-y/21-19 = 4/2 = 2
=> x/21 = 2 => x = -2 × 19 = 42
y/19 = 2 => y = -2 × 22 = 38
Vậy x = 42
y = 38
Lời giải:
$A=1+2.3+3.4+4.5+...+2022.2023$
$3A=3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+2022.2023(2024-2021)$
$=3+2.3.4+3.4.5+4.5.6+...+2022.2023.2024-(1.2.3+2.3.4+3.4.5+...+2021.2022.2023)$
$=3+2022.2023.2024-1.2.3=2022.2023.2024-3$
$\Rightarrow A=2759728047$
Theo bài ra ta có:
\(\dfrac{\widehat{A}}{1}\) = \(\dfrac{\widehat{B}}{2}\) = \(\dfrac{\widehat{C}}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{1}\) = \(\dfrac{\widehat{B}}{2}\) = \(\dfrac{\widehat{C}}{3}\) = \(\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}\) = \(\dfrac{180^0}{6}\) = 300
\(\dfrac{\widehat{C}}{3}\) = 300 ⇒ \(\widehat{C}\) = 300 x 3 = 900
Vậy tam giác ABC là tam giác vuông tại C (đpcm)
Lời giải:
Tỉ số lúa mì so với bột mì: $12:11$
Tỉ số bột mì so với bánh mì: $10:13$
Từ 1440 kg lúa mì thu được số kg bột mì là:
$1440:12\times 11=1320$ (kg)
Từ 1320 kg bột mì thu được số kg bánh mì là:
$1320:10\times 13=1716$ (kg)
b.
Làm 260 kg bánh mì cần: $260\times 10:13=200$ (kg bột mì)
Hiện tại, trên diễn đàn mình không đổi được bạn nhé.
Di chuột vô góc phải Màn hình (vào tên của mình) nhưng đừng vội nhấn.
B2: ấn vào "thông tin tài khoản"
rồi bạn muốn chỉnh gì thì chỉnh.