Giải phương trình: \(\left(10a+b\right)^2=\left(a+b\right)^3\) với \(a,b\inℤ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)
(1) \(\Leftrightarrow4n+4=4k^2\) (3)
Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)
Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có
\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)
Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.
Lời giải:
Giả sử pt có nghiệm $(x,y)$ nguyên dương.
$ax+by=ab\vdots a$
$\Rightarrow by\vdots a$. Mà $(a,b)=1$ nên $y\vdots a$
$ax+by=ab\vdots b\Rightarrow ax\vdots b\Rightarrow x\vdots b$
Đặt $y=am, x=bn$ với $m,n$ nguyên.
Vì $x,y$ nguyên dương, $a,b$ lại là stn khác 0 nên $m,n$ nguyên dương.
Khi đó: $ab=ax+by=abn+bam=ab(m+n)$
$\Rightarrow 1=m+n$
Vì $m,n$ nguyên dương nên $m+n\geq 2$. Do đó việc $m+n=1$ vô lý.
Vậy điều giả sử là sai. Tức là không tồn tại $x,y$ nguyên dương.
??? bản thân tự giải đi đừng dùng trí tuệ nhân tạo giả nữa. Xin bạn hãy giả tử tế cho mình
x^2 - 5xy - 24y^2 = (ax + by)(cx + dy)
Để tìm a và b, ta có thể sử dụng phương pháp phân tích nhân tử hoặc giải hệ phương trình. Trong trường hợp này, ta sẽ sử dụng phương pháp phân tích nhân tử.
Đầu tiên, ta xem x^2 - 5xy - 24y^2 có thể phân tích thành nhân tử như sau:
x^2 - 5xy - 24y^2 = (px + qy)(rx + sy)
Trong đó, p, q, r, s là các số cần tìm.
Tiếp theo, ta nhân hai ngoặc vuông:
(px + qy)(rx + sy) = p(rx + sy)x + q(rx + sy)y
= prx^2 + psxy + qrxy + qsy^2
So sánh với biểu thức ban đầu, ta có hệ phương trình sau:
pr = 1
ps + qr = -5
qs = -24
Từ hệ phương trình trên, ta có thể tìm các giá trị của p, q, r, s. Sau khi tìm được các giá trị này, ta có thể viết lại biểu thức ban đầu dưới dạng nhân tử.
Gọi 3 số lần lượt là n; n+1; n+2
3 tích lần lượt là:
\(n\left(n+1\right)=n^2+n\\ n\left(n+2\right)=n^2+2n\\ \left(n+1\right)\left(n+2\right)=n^2+3n+2\)
Theo đề bài, ta có:
\(n^2+n+n^2+2n+n^2+3n+2=242\\ \Leftrightarrow3n^2+6n-240=0\\ \Leftrightarrow3\left(n-8\right)\left(n+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}n=8\\n=-10\end{matrix}\right.\)
Vậy bộ 3 số đó là \(\left\{8;9;10\right\},\left\{-10;-9;-8\right\}\)
a, đều cùng có giá trị dương:
- Để các đơn thức có giá trị dương, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ nhất (x^3y^2z) không có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là dương.
b, đều có giá trị âm thanh giống nhau:
- Để các đơn thức có giá trị âm thanh giống nhau, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ ba (-3x^2yzt) có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là âm
Ta có: \(10^{n+1}-10^n=10^n\left(10-1\right)=9\cdot10^n\)
Mà UCLN\(\left(9\cdot10^n;17\right)\) = 1
⇒ \(10^{n+1}-10^n\) không chia hết cho 17 với mọi số nguyên x.
\(\left(x-5\right)^3-2y\left(5-x\right)^2\\ =\left(x-5\right)^2\left(x-5-2y\right)\)
Pt đã cho \(\Leftrightarrow\left(\dfrac{10a+b}{a+b}\right)^2=a+b\inℤ\). Ta thấy nếu \(a+b\) không là số chính phương thì khi đó \(\sqrt{a+b}=\dfrac{10a+b}{a+b}\), vô lí vì VT là số vô tỉ trong khi VP là số hữu tỉ (do \(a,b\inℤ\)). Do đó, \(a+b\) phải là số chính phương hay \(\dfrac{10a+b}{a+b}=k\inℤ\) . Suy ra \(a+b=k^2\).
Từ đó suy ra \(10a+b=k\left(a+b\right)=k^3\). Do đó ta có hệ pt sau:
\(\left\{{}\begin{matrix}a+b=k^2\\10a+b=k^3\end{matrix}\right.\). Giải hpt, ta thu được họ nghiệm là \(\left(a,b\right)=\left(\dfrac{k^3-k^2}{9},\dfrac{10k^2-k^3}{9}\right)\). Do \(a,b\inℤ\) nên \(\left\{{}\begin{matrix}9|k^3-k^2\\9|10k^2-k^3\end{matrix}\right.\Leftrightarrow9|k^3-k^2\) \(\Leftrightarrow9|k^2\left(k-1\right)\). Hơn nữa \(\left(k^2,k-1\right)=1\) nên suy ra \(\left[{}\begin{matrix}9|k^2\\9|k-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3|k\\k\equiv1\left[9\right]\end{matrix}\right.\)
Như vậy, tất cả các cặp số có dạng \(\left(\dfrac{k^3-k^2}{9},\dfrac{10k^2-k^3}{9}\right)\) với \(k⋮3\) hoặc \(k\equiv1\left[9\right]\) đều thỏa mãn pt đã cho.
Ở dòng đầu tiên mình thiếu trường hợp nếu \(a+b=0\) thì \(10a+b=0\) \(\Leftrightarrow a=0\Leftrightarrow b=0\) là nghiệm của pt đã cho, sau đó mình xét \(a+b\ne0\) thì mới chia được 2 vế cho \(a+b\) như trong bài nhé.