Có \(a^3+b^3+c^3=3abc\)
Chứng minh : a+b+c=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x\left(x^2+x\right)+x\left(x+1\right)\)
\(A=x^2\left(x+1\right)+x\left(x+1\right)\)
\(A=\left(x+1\right)\left(x^2+x\right)\)
\(A=\left(x+1\right)x\left(x+1\right)\)
\(A=x\left(x+1\right)^2⋮\left(x+1\right)\)
\(\Rightarrow dpcm\)
Ta có: x^2 - 12x + 33 = (x^2 - 12x + 36) - 3 = (x - 6)^2 - 3.
Vậy hàm số y = x^2 - 12x + 33 có giá trị nhỏ nhất là -3, khi x = 6.
2. Sử dụng công thức tính đạo hàm:
Đạo hàm của hàm số y = x^2 - 12x + 33 là y' = 2x - 12.
Để tìm giá trị nhỏ nhất, ta giải phương trình y' = 0:
2x - 12 = 0
=> 2x = 12
=> x = 6.
Khi x = 6, ta có y = 6^2 - 12*6 + 33 = -3.
Vậy giá trị nhỏ nhất của hàm số y = x^2 - 12x + 33 là -3, khi x = 6.
\(A=x^2-12x+33\)
\(A=x^2-12x+36-3\)
\(A=\left(x-6\right)^2-3\)
mà \(\left(x-6\right)^2\ge0,\forall x\)
\(\Rightarrow A=\left(x-6\right)^2-3\ge0-3=-3\)
\(\Rightarrow GTNN\left(A\right)=-3\left(x=6\right)\)
CM:(n-1)^2(n+1)+(n-1)(n+1) chia hết cho 6 với 1 số nguyên n. Mng giúp mình vs ạ. Mình c.on nhiều ạaa
\(\left(n-1\right)^2\left(n+1\right)+\left(n-1\right)\left(n+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left[\left(n-1\right)+1\right]\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Xét:
\(n\left(n-1\right)\) là hai số tự nhiên liên tiếp nên sẽ có số chẵn nên sẽ chia hết cho 2
\(n\left(n-1\right)\left(n+1\right)\) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3
Mà: (2;3)=1 nên
\(n\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 2 x 3 = 6 (đpcm)
\(\left(n-1\right)^2\left(n+1\right)+\left(n-1\right)\left(n+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\) là 3 số tự nhiên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(n-1\right)n\left(n+1\right)⋮2\\\left(n-1\right)n\left(n+1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮\left(2.3\right)\)
mà \(UCLN\left(2;3\right)=1\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Rightarrow dpcm\)
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Bài toán tương đương với tìm số tự nhiên N có 4 chữ số sao cho N và \(N+1353\) đều là các SCP có 4 chữ số. Bạn chỉ cần đặt \(\left\{{}\begin{matrix}N=n^2\\N+1353=m^2\end{matrix}\right.\), trừ theo vế thu được \(\left(m-n\right)\left(m+n\right)=1353\). Tới đây bạn chặn \(0< m-n< m+n\) kèm theo \(32\le n\le92\) và \(49\le m\le99\) rồi chia trường hợp, đối chiếu điều kiện là xong.
Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy nếu \(5|n\), \(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)
Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).
Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)
\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)
\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)
\(\Rightarrow dpcm\)
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
mà \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a+b+c=0\)
\(\Rightarrow dpcm\)