\(^{x^4-6x^3+16x^2-22x+16=0}\) chứng minh pt sau vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)
\(A=-\left(1+2+3+...+2004\right)+2005^2\)
\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)
\(A=-1002.2005+2005^2\)
\(A=2005\left(2005-1002\right)=2005.1003=2011015\)
8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{64}-1\right)-2^{64}\)
\(B=-1\)
\(A=-1^2+2^2-3^2+4^2-...-99^2+100^2\)
\(A=\left(2-1\right).\left(1+2\right)+\left(4-3\right).\left(3+4\right)+...\left(+100-99\right).\left(99+100\right)\)
\(A=1.\left(1+2+3+...+99+100\right)\)
\(A=\dfrac{100.\left(100+1\right)}{2}=50.101=5050\)
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
Đặt \(3p+4=k^2\left(k\ge4\right)\)
\(\Leftrightarrow k^2-4=3p\)
\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)
Ta thấy \(0< k-2< k+2\) nên có 2TH:
TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.
TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.
Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.
\(\left(x+1\right)\left(y+1\right)=9\)
\(\Rightarrow xy+x+y+1=9\)
\(\Rightarrow xy+x+y=8\)
\(\Rightarrow x+y=8-xy\left(1\right)\)
\(K=x^2+y^2\)
\(\Rightarrow K=\left(x+y\right)^2-2xy=\left(8-xy\right)^2-2xy\)
\(\Rightarrow K=64-16xy+\left(xy\right)^2-2xy\)
\(\Rightarrow K=\left(xy\right)^2-18xy+64\)
\(\Rightarrow K=\left(xy\right)^2-18xy+81-17\)
\(\Rightarrow K=\left(xy-9\right)^2-17\ge-17\left(\left(xy-9\right)^2\ge0,\forall x;y\right)\)
\(\Rightarrow GTNN\left(K\right)=-17\)
PT \(\Leftrightarrow\dfrac{m\left(1-mx\right)+1+mx}{\left(1+mx\right)\left(1-mx\right)}=\dfrac{1}{\left(1-mx\right)\left(1+mx\right)}\)
\(\Rightarrow m-m^2x+1+mx=1\)
\(\Leftrightarrow x\left(m-m^2\right)+m=0\)
Để phương trình vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m-m^2=0\\m\ne0\end{matrix}\right.\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
Số điểm 10 của tổ 1 chiếm số phần của cả lớp là:
\(\dfrac{1}{1+3}=\dfrac{1}{4}\)( cả lớp)
Số điểm 10 của tổ 2 chiếm số phần của cả lớp là:
\(\dfrac{1}{1+4}=\dfrac{1}{5}\)( cả lớp)
Số điểm 10 của tổ 3 chiếm số phần của cả lớp là:
\(\dfrac{1}{5+1}=\dfrac{1}{6}\)( cả lớp)
Số điểm 10 của tổ 4 chiếm số phần của cả lớp là:
\(1-\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\right)=\dfrac{23}{60}\)( cả lớp)
Số điểm 10 của cả lớp là:
\(46:\dfrac{23}{60}=120\)( điểm 10)
Vậy số điểm 10 của cả lớp là: \(120\) điểm 10.
Điểm 10 của tổ 1 chiếm số phần điểm 10 của cả lớp là:
\(\dfrac{1}{1+3}=\dfrac{1}{4}\) ( cả lớp )
Điểm 10 của tổ 2 chiến số phần điểm 10 của cả lớp là:
\(\dfrac{1}{4+1}=\dfrac{1}{5}\) ( cả lớp )
Điểm 10 của tổ 3 chiếm số phần điểm 10 của cả lớp là:
\(\dfrac{1}{5+1}=\dfrac{1}{6}\) ( cả lớp )
Điểm 10 của tổ 4 chiếm số phần điểm 10 của cả lớp là:
\(1-\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\right)=\dfrac{23}{60}\) ( cả lớp )
Cả lớp của tất cả số điểm 10 là:
\(46\div\dfrac{23}{60}=120\) ( điểm 10 )
Đáp số: \(120\) điểm 10
\(x^4-6x^3+16x^2-22x+16=0\)
\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)
\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)
\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)
\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)
\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)
Vậy phương trình trên vô nghiệm (dpcm)