Tính hợp lý :
(-0,35) : 7 + 7,5 x 0,1 - 0,7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
a) 5p + 3 là số nguyên tố
=> 5p + 3 lẻ
=> 5p chẵn
=> p chẵn
Mà số nguyên tố chẵn duy nhất là 2.
Vậy p = 2 b
) Vì p là số nguyên tố < 7 nên :
- Nếu p = 2 thì p + 2 = 4, là hợp số, loại
- Nếu p = 3 thì p + 6 = 9, là hợp số, loại
- Nếu p = 5 thì p + 2 = 7 ; p + 6 = 11 ; p + 8 = 13 đều là số nguyên tố, chọn
Vậy p = 5
Tìm số nguyên tố p sao cho:
a) 5p + 3 là số nguyên tố
b) p+2; p+6; p+8 là các số nguyên tố (p<7)
Giải:
a) 5p + 3 là số nguyên tố
=> 5p + 3 là số lẻ
Mà 3 lẻ => 5p là số chẵn.
=> p = 2 vì 2 là số nguyên tố chẵn duy nhất.
Vậy p=2
b) Vì p<7 => Các giá trị p có thể là 2; 3; 5.
+> Nếu p = 2. Ta có:
p + 2 = 2 + 2 = 4 (loại vì là hợp số)
+> Nếu p = 3. Ta có:
p + 6 = 3 + 6 = 9 (loại vì là hợp số)
+> Nếu p = 5. Ta có:
p + 2 = 5 + 2 = 7 (thỏa mãn)
p + 6 = 5 + 6 = 11 (thỏa mãn)
p + 8 = 5 + 8 = 13 (thỏa mãn)
=> p = 5
Vậy p=5
a: những cặp điểm nằm cùng phía với M là B,N; N,C; B;C
b: B nằm giữa A và C; B nằm giữa M và N; B nằm giữa A và N; B nằm giữa M và C
c: B là mút chung của các đoạn: BM,BA,BN.BC
d: Tia đối của tia BC là tia BA
e: M là trung điểm của AB
=>\(AB=2\cdot AM=2\left(cm\right)\)
B nằm giữa A và C
=>AB+BC=AC
=>BC+2=6
=>BC=4(cm)
N là trung điểm của BC
=>\(BN=\dfrac{BC}{2}=\dfrac{4}{2}=2\left(cm\right)\)
Tách 2024 điểm ra thành 2 nhóm là 24 điểm thẳng hàng và 2000 điểm còn lại
+) Xét 2000 điểm không thẳng hàng
Mỗi điểm sẽ nối với 1999 điểm còn lại, mỗi đường lặp lại 2 lần nên ta có:
2000 điểm không thẳng hàng tạo số đường thẳng là:
\(\dfrac{2000.1999}{2}=1999000\) (đường)
+) Xét 24 điểm thẳng hàng
Mỗi điêm sẽ nối với 2000 điểm còn lại nên ta có:
\(24.2000=48000\) (đường)
+) Vậy tổng số đường thẳng mà 2024 điểm trên tạo thành là:
\(1999000+48000+1=2047001\) (đường)
(Bài mình tự làm nên có thể có sai sót)
Giải:
Số điểm không thẳng hàng là: 2024 - 24 = 2000 (điểm)
Cứ 1 điểm sẽ tạo với 2000 - 1 điểm còn lại 2000 - 1 đường thẳng
Với 2000 điểm sẽ tạo được: (2000 - 1) x 2000 (đường thẳng)
Theo cách tính trên mỗi đường thẳng sẽ được tính hai lần, vậy thực tế số đường thẳng là:
(2000 - 1) x 2000 : 2 = 1999000 (đường thẳng)
Qua 24 điểm thẳng hàng ta chỉ kẻ được 1 đường thẳng d
Cứ 1 điểm nằm ngoài đường thẳng d sẽ tạo được với 24 điểm trên d số đường thẳng là: 24 đường thẳng
Với 2000 điểm sẽ tạo được số đường thẳng là:
24 x 2000 = 48000 (đường thẳng)
Từ những lập luận trên ta có tất cả số đường thẳng có thể tạo là:
1999000 + 1 + 48000 = 2047001 (đường thẳng)
Kết luận:...
\(B=\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(B=\dfrac{1}{4}-\dfrac{1}{100}=\dfrac{6}{25}\)
\(A=-\dfrac{1}{1.2}-\dfrac{1}{2.3}-...-\dfrac{1}{49.50}\)
\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-\left(1-\dfrac{1}{50}\right)\)
\(=-\dfrac{49}{50}\)
Lời giải:
$(-2)^3.\frac{-1}{24}+(\frac{4}{5}-1,2):\frac{2}{15}$
$=-8.\frac{-1}{24}+\frac{-2}{5}.\frac{15}{2}$
$=\frac{1}{3}+(-3)=-(3-\frac{1}{3})=-\frac{8}{3}$
11.
$3(3x-\frac{1}{3})^3+\frac{1}{9}=0$
$(3x-\frac{1}{3})^3=\frac{-1}{27}=(\frac{-1}{3})^3$
$3x-\frac{1}{3}=\frac{-1}{3}$
$3x=\frac{-1}{3}+\frac{1}{3}=0$
$x=0:3=0$
12.
$(3x-1)(\frac{-1}{2-x}+5)=0$
$\Rightarrow 3x-1=0$ hoặc $\frac{-1}{2-x}+5=0$
Với $3x-1=0$
$\Rightarrow x=\frac{1}{3}$
Với $\frac{-1}{2-x}+5=0$
$\Rightarrow \frac{-1}{2-x}=-5$
$\Rightarrow 2-x=\frac{1}{5}$
$x=2-\frac{1}{5}=\frac{9}{5}$
Lời giải:
Số sách ngăn A =$\frac{2}{3}$ số sách ngăn B
$\Rightarrow$ số sách ngăn A =$\frac{2}{5}$ tổng số sách
Khi chuyển 3 quyển sách từ ngăn A sang ngăn B thì tổng số sách 2 ngăn không đổi. Lúc này,
Số sách ngăn A - 3 = $\frac{3}{7}$ (số sách ngăn B+3)
$\Rightarrow$ Số sách ngăn A - 3 = $\frac{3}{10}$ tổng số sách
3 quyển sách bỏ ra từ ngăn A chiếm số phần tổng số sách là:
$\frac{2}{5}-\frac{3}{10}=\frac{1}{10}$
Tổng số sách hai ngăn: $3: \frac{1}{10}=30$ (quyển)
Số sách ngăn A ban đầu: $30.\frac{2}{5}=12$ (quyển)
Số sách ngăn B ban đầu: $30-12=18$ (quyển)
Gọi số sách ngăn B ban đầu là \(x\), số sách ngăn A ban đầu là \(\dfrac{2}{3}x\) (\(x\inℕ\)).
Lúc sau, số quyền sách ngăn A, do chuyển 3 quyển sang ngăn B nên còn lại \(\dfrac{2}{3}x-3\); số quyển sách ngăn B là \(x+3\).
Mà số sách lúc sau của ngăn A bằng \(\dfrac{3}{7}\) số sách ngăn B, nên:
\(\dfrac{2}{3}x-3=\dfrac{3}{7}\left(x+3\right)\\ \Leftrightarrow x=18\)
Vậy số sách lúc đầu của ngăn A là \(18.\dfrac{2}{3}=12\), của ngăn B là 18.
(-0,35) : 7 + 7,5 x 0,1 - 0,7
= [(-0,35) : 7 + 7,5 : 10] - 0,7
= -0,05 + 0,75 - 0,7
= 0,7 - 0,7
= 0
(-0,35) : 7 + 7,5 . 0,1 - 0,7
= [(-0,35) : 7] + (7,5 : 10) - 0,7
= (-0,05) + 0,75 - 0,7
= 0,7 - 0,7
= 0.