cho a là tập hợp các số tự nhiên không vượt quá 10 . hãy viết a bằng hai cách
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=1+5^2+5^4+...+5^{100}\)
\(5^2A=5^2+5^4+...+5^{102}\\ 25A-A=\left(5^2+5^4+...+5^{102}\right)-\left(1+5^2+...+5^{100}\right)\\ 24A=5^{102}-1\\ A=\dfrac{5^{102}-1}{24}\)
A = 1 + 52 + 53 + 54 + .... + 5100
5A = 5 + 53 + 54 + 55 + ... + 5101
5A - A = 5 + 53 + 54 + 55 + ... + 5101 - (1 + 52 + 53 + 54 + ... + 5100)
4A = 5 + 53 + 54 + 55 + ... + 5101 - 1 - 52 - 53 - 54 - ... - 5100
4A = (5101+ 5 - 1 - 52) + (53 - 53) + (54 - 54)+ ... + (5100 - 5100)
4A = (5101 + 5 - 1 - 25) + 0 + 0 + 0 + ... + 0 + 0
4A = 5101 - (1 + 25 - 5)
4A = 5101 - (26 - 5)
A = \(\dfrac{5^{101}-21}{4}\)
Tính chất:
\(\dfrac{a}{b}=\dfrac{a\times m}{b\times m}\left(m\in N\text{*}\right)\\ \dfrac{a}{b}=\dfrac{a:n}{b:n}\left(n\in N\text{*}\right)\)
bạn tham khảo nhé!
Tính chất cơ bản của phân số
+) Nếu ta nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được phân số bằng phân số đã cho.
+) Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.
\(a.x^2+4x+4=\left(x+2\right)^2\\ b.x^2-5=\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\\ c.9x^2+6x+1=\left(3x+1\right)^2\\ d.64x^3-27y^3=\left(4x\right)^3-\left(3y\right)^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\\ e.\left(x+1\right)^2-4y^2=\left(x+1\right)-\left(2y\right)^2=\left(x-2y+1\right)\left(x+2y+1\right)\\ f.8x^3+12x^2+6x+1=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=\left(2x+1\right)^3\)
a, bn xem lại nhé
b, \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c, \(9x^2+6x+1=\left(3x\right)^2+2.3x+1=\left(3x+1\right)^2\)
d, \(64x^3-27y^3=\left(4x\right)^3-\left(3y\right)^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
e, \(\left(x+1\right)^2-4y^2=\left(x+1-2y\right)\left(x+1+2y\right)\)
f, \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2+3.2x.1^2+1=\left(2x+1\right)^3\)
g, \(6x^2-24y^2=\left(\sqrt{6}x\right)^2-\left(2\sqrt{6}y\right)^2=\left(\sqrt{6}x-2\sqrt{6}y\right)\left(\sqrt{6}x+2\sqrt{6}y\right)\)
h, \(\left(x+y\right)^3+8y^3=\left(x+y+2y\right)\left[\left(x+y\right)^2-2y\left(x+y\right)+4y^2\right]\)
\(=\left(x+3y\right)\left(x^2+3y^2\right)\)
k, \(1975x^4-1975x^2=1975x^2\left(x^2-1\right)=1975x^2\left(x-1\right)\left(x+1\right)\)
i, \(x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
m, \(x^4-2x^3+x^2=x^2\left(x^2-2x+1\right)=x^2\left(x-1\right)^2\)
Tổng số hs 22 + 28 = 50 (hs)
Tỉ số hs nam với cả lớp 28/50 = 14/25
Tỉ số hs nữ với cả lướp 22/50 = 11/25
Tổng số học sinh lớp 5A là:
`22 + 28 = 50` (học sinh)
Tỉ số % giữa số học sinh nam và số học sinh cả lớp là:
`28 : 50` x `100 = 56%` (số học sinh cả lớp)
Tỉ số % giữa số học sinh nam và số học sinh cả lớp là:
`22 : 50` x `100 = 44%` hoặc `100% - 56% = 44%` (số học sinh cả lớp)
Đáp số: ...
\(e.\left(\dfrac{-13}{3}-\dfrac{4}{9}\right)-\left(\dfrac{-10}{3}-\dfrac{4}{9}\right)\\ =\dfrac{-13}{3}-\dfrac{4}{9}+\dfrac{10}{3}+\dfrac{4}{9}\\ =\left(\dfrac{-13}{3}+\dfrac{10}{3}\right)+\left(\dfrac{4}{9}-\dfrac{4}{9}\right)\\ =-\dfrac{3}{3}=-1\\ d.\dfrac{-4}{12}-\left(-0,25-\dfrac{13}{39}\right)+0,75\\ =\dfrac{-1}{3}-\left(-\dfrac{1}{4}-\dfrac{1}{3}\right)+\dfrac{3}{4}\\ =-\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{3}{4}\\ =\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =0+\dfrac{4}{4}\\ =1\)
a) Ta có:
\(sin54^o=\dfrac{y}{3}=>y=3\cdot sin54^o\approx2,4\left(cm\right)\\ =>x=\sqrt{3^2-y^2}=\sqrt{9-2,4^2}\approx1,8\left(cm\right)\)
b) Ta có:
\(sin32^o=\dfrac{1,5}{y}=>y=\dfrac{1,5}{sin32^o}\approx2,8\left(cm\right)\\ =>x=\sqrt{y^2-1,5^2}=\sqrt{2,8^2-1,5^2}\approx2,4\)
c) Ta có:
\(tan70^o=\dfrac{y}{0,8}=>y=0,8\cdot tan70^o\approx2,2\left(cm\right)\\ =>x=\sqrt{y^2+0,8^2}=\sqrt{2,2^2+0,8^2}\approx2,3\left(cm\right)\)
Cho tam giác ABC vuông tại A, ^B là góc biết số đo
a, sinB = y/3 => y \(\approx\)2,42 cm
cosB = x/3 => y \(\approx\)1,76 cm
b, sinB = 1,5/y => y = 1,5/sinB \(\approx\)2,83 cm
tanB = 1,5/x => x = 1,5/tanB => x \(\approx\)2,4 cm
c, tanB = y/0,8 => y = 0,8.tanB => y \(\approx\)2,19 cm
cosB = 0,8/x => x = 0,8/cosB => x \(\approx\)2,34 cm
Xét tam giác ABC vuông tại A
a, Theo Pytago ta có \(c=\sqrt{a^2-b^2}=3\sqrt{13}\)
sinB = AC/BC = 18/21 = 6/7 => ^B = \(\approx\)590
Do ^B ; ^C phụ nhau => ^C \(\approx\)310
b, Do ^B ; ^C phụ nhau => ^B = 600
tanC = AB/AC = c/b => c = b.tanC = \(\dfrac{10\sqrt{3}}{3}\)
cosC = AC/BC = b/a => a = b/cosC = \(\dfrac{20\sqrt{3}}{3}\)
c, Theo Pytago \(a=\sqrt{b^2+c^2}=\sqrt{34}\)
tanB = AC/AB => ^B \(\approx\)310
Do ^B ; ^C phụ nhau ^C \(\approx\)590
Cách 1:
\(A=\left\{x\in N;x\le10\right\}\)
Cách 2:
\(A=\left\{0;1;2;3;4;5;6;7;8;9;10\right\}\)