\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) chứng minh tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm của đường tròn cần tìm
Vì I thuộc d1 : 3x - y - 5 = 0 và có tung độ âm => I ( x; 3x - 5 ) với 3x - 5 < 0
Gọi A; B là giao điểm của d2 : x - 4 = 0 với đường tròn
=> AB = 8
Gọi M là trung điểm của AB => AM = 8: 2 = 4
=> d( I ; d2 ) = IM = \(\sqrt{AI^2-AM^2}=\sqrt{5^2-4^2}=3\)
khi đó ta có: \(\frac{\left|x-4\right|}{1}=3\)
<=> \(\orbr{\begin{cases}x-4=3\\x-4=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Với x = 7 => I ( 7; 16 ) loại vì 16 > 0
Với x = 1 => I ( 1; -2)
Phương trình đường tròn cần tìm là: ( x - 1 )^2 + ( y + 2 ) ^2 = 25
Đường thẳng a: 3x - 4y - 31 = 0
Gọi I ( x; y ) là tâm của đương tròn cần tìm
Ta có: d( I; a ) = IA = 5 =>\(\frac{\left|3x-4y-31\right|}{\sqrt{3^2+4^2}}=5\) <=> \(\left|3x-4y-31\right|=25\)<=> 3x - 4y - 31 = 25 ( 1) hoặc 3x - 4y - 31 = -25 ( 2)
a có VTPT \(\overrightarrow{n}\) = ( 3; -4) => a có VTCP \(\overrightarrow{u}\) = ( 4; 3 )
Lại có: IA vuông góc với a => ( 1- x ) . 4 + 3 ( - 7 - y ) = 0 <=> - 4x -3 y = 17 (3)
Từ (1) ; (3) => \(I_1\left(4;-11\right)\)
Từ (2) ; (3) => \(I_2\left(-2;-3\right)\)
Đáp án A
Có 2 nghiệm phân biệt cùng dấu dương
\(\hept{\begin{cases}\Delta>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-2m^2+11m-5>0\\\frac{3\left(m-2\right)}{m-1}>0\end{cases}}}\)
ĐK
\(\hept{\begin{cases}\frac{1}{2}< m< 5\\m< 1haym>2\end{cases}\Leftrightarrow\frac{1}{2}< m< 1\left(hay\right)2< m< 5}\)
\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)
=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)
\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)
X2- mx+1 <0
\(\Delta\)= (-m)2 -4.1.1
\(\Delta\)= m -4
để BPT trên có nghiệm khi \(\Delta\)<0
Tức là: m-4<0
m<4
Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x
vẫn thời trẻ trâu nên ko bik câu nài giải như thế nào!Trân trọng!
chắc không ai giải ra đâu hề
very difficult
study well
Extremely hard