cho góc bẹt xOy, vẽ các tia OA, OB thuộc cùng một nửa mặt phẳng góc Bxy. Trên hình vẽ có bao nhiêu góc và kể tên các góc đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tiền Mai phải trả cho 2 cái áo là:
\(110000\cdot2\cdot\left(1-20\%\right)=176000\left(đồng\right)\)
Số tiền Mai phải trả cho 1 đôi giày là:
\(480000\cdot\left(1-20\%\right)=384000\left(đồng\right)\)
Số tiền Mai còn lại là:
700000-176000-384000=140000(đồng)
Ta có:
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=2.\left(\dfrac{4}{16}-\dfrac{1}{16}\right)\)
\(A=2.\dfrac{3}{16}\)
\(A=\dfrac{3}{8}\)
Vậy A = \(\dfrac{3}{8}\)
\(A=\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{120}\)
\(=\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{240}\)
\(=2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{15\cdot16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=2\cdot\dfrac{3}{16}=\dfrac{3}{8}\)
\(\dfrac{3}{8}=\dfrac{3\cdot5}{8\cdot5}=\dfrac{15}{40};\dfrac{2}{5}=\dfrac{2\cdot8}{5\cdot8}=\dfrac{16}{40}\)
mà 15<16
nên \(\dfrac{3}{8}< \dfrac{2}{5}\)
3/8= 3.5/ 8.5= 15/40
2/5= 2.8/ 5.8= 16/40
16/40 > 15/40 => 2/5 > 3/8 đẹp zai :)
g. \(-\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{5}\div\dfrac{9}{11}=-\dfrac{8}{15}+\dfrac{1}{5}\times\dfrac{11}{9}=-\dfrac{8}{15}+\dfrac{11}{45}=\dfrac{24}{45}+\dfrac{11}{45}=\dfrac{35}{45}=\dfrac{7}{9}\)
h.
\(\left(-6,2\div2+3,7\right)\div0,2=\left(-3,1+3,7\right)\div0,2=0,6\div0,2=3\)
k.
\(\dfrac{2}{3}+\dfrac{1}{5}\times\dfrac{10}{7}=\dfrac{2}{3}+\dfrac{10}{35}=\dfrac{2}{3}+\dfrac{2}{7}=\dfrac{14}{21}+\dfrac{6}{21}=\dfrac{20}{21}\)
m.
\(\dfrac{2}{7}+\dfrac{5}{7}\times\dfrac{14}{25}=\dfrac{2}{7}+\dfrac{1\times2}{1\times5}=\dfrac{2}{7}+\dfrac{2}{5}=\dfrac{10}{35}+\dfrac{14}{35}=\dfrac{24}{35}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{2021^2}< \dfrac{1}{2020\cdot2021}=\dfrac{1}{2020}-\dfrac{1}{2021}\)
Do đó: \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
=>\(B< 1-\dfrac{1}{2021}< 1\)
???????????????????.?????????????????????????????????????????????¿??????????????¿????????????????????????????????????
12345678910
a: \(4n-5⋮n\)
=>\(-5⋮n\)
=>\(n\in\left\{1;-1;5;-5\right\}\)
b: \(-11⋮n-1\)
=>\(n-1\inƯ\left(-11\right)\)
=>\(n-1\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{2;0;12;-10\right\}\)
Trên hình vẽ có 6 góc: \(\widehat{xOA};\widehat{xOB};\widehat{xOy};\widehat{AOB};\widehat{AOy};\widehat{yOB}\)