K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

= -1,317957759 :) đê

22225628894 + 39198492421 - 473219897182 =-411795775867

#Học Tốt

Đề thi đánh giá năng lực

30 tháng 4 2019

Milk lộn toán hình nhé!

30 tháng 4 2019

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)

a) Ta có AP→=(a;a2;a)

                       BC′→=(0;a;a).

Gọi α là góc giữa hai đường thẳng AP và BC′ ta có :

         cos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP→=(a;a2;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0 (n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB) là x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra MN→=(k2;a2−2k2;–k2).

Ta có MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).

d) Ta có MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2 nhỏ nhất bằng a23 khi k=a23 (thoả mãn điều kiện 0<k<a2 ).

Vậy MN ngắn nhất bằng a33 khi k=a23.

e) Khi MN ngắn nhất thì k=a23 Khi đó MN→=(a3;a3;–a3).

Ta lại có AD′→=(0;a;a),DB→=(a;–a;0) nên MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.

Mặt khác A′C→=(a;a;–a)=3MN→, chứng tỏ MN→A′C→ cùng phương. Do N∉A′C  nên 

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)

a) Ta có AP→=(a;a2;a)

                       BC′→=(0;a;a).

Gọi α là góc giữa hai đường thẳng AP và BC′ ta có :

         cos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP→=(a;a2;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0 (n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB) là x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra MN→=(k2;a2−2k2;–k2).

Ta có MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).

d) Ta có MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2 nhỏ nhất bằng a23 khi k=a23 (thoả mãn điều kiện 0<k<a2 ).

Vậy MN ngắn nhất bằng a33 khi k=a23.

e) Khi MN ngắn nhất thì k=a23 Khi đó MN→=(a3;a3;–a3).

Ta lại có AD′→=(0;a;a),DB→=(a;–a;0) nên MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác A′C→=(a;a;–a)=3MN→, chứng tỏ MN→A′C→ cùng phương. Do N∉A′C  nên 

30 tháng 4 2019

Toán lóp mấy đây 

30 tháng 4 2019

Vì 2 lớp ^A, ^B thu dduocj số kg giấy = nhau nên gọi số kg giấy vụn mỗi lớp thu được là x (kg) (200 < x < 300)

Gọi số hs lớp 6A là a (hs) (x thuộc N*), số hs lớp 6B là b (hs) (b thuộc N*)

Lớp 6A thu được số kg giấy vụn là: x = 26 + 11a = 11(a + 1) + 15 => x - 15 = 11(a + 1)

Mà a thuộc N* => a + 1 thuộc N* => x - 15 chia hết cho 11

Lớp 6B thu được số kg giấy vụn là x = 25 + 10b = 10(b + 1) + 15 => x - 15 = 10(b + 1)

Mà b thuộc N* => b + 1 thuộc N* => x - 15 chia hết cho 10

Do đó x - 15 thuộc BC(10; 11)

Mà 200 < x < 300 => 185 < x - 15 < 285

Từ 2 điều trên => x - 15 = 220

=> x = 235 (kg)

25 tháng 4 2019

= 2 nha lần sau đừng viết dài dòng

24 tháng 4 2019

Khi và chỉ khi cậu làm sai 

24 tháng 4 2019

1+1=1-(-1)

23 tháng 4 2019

1+1=3 khi phép toán này sai

học tốt !

23 tháng 4 2019

1+1=3 khi bạn này ngu