K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a) \(\left|x-5\right|=x-5\)

Ta có: \(VT\ge0\Rightarrow x-5\ge0\)

\(\Rightarrow\left|x-5\right|=x-5\)

Phương trình trở thành \(x-5=x-5\)(đúng)

Vậy \(x\ge0\)

4 tháng 3 2020

b) Xét khoảng \(x< 2\)

PTTT: \(\left(2-x\right)+\left(3-x\right)=x\Leftrightarrow5=3x\)

\(\Leftrightarrow x=\frac{5}{3}\)(tm)

  Xét khoảng \(2\le x\le3\)

PTTT: \(\left(x-2\right)+\left(3-x\right)=x\Leftrightarrow x=1\)(L)

  Xét khoảng x > 3

PTTT: \(\left(x-2\right)+\left(x-3\right)=x\Leftrightarrow x=5\left(tm\right)\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{3}\right\}\)

4 tháng 3 2020

a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)

\(\Rightarrow25-25+b=0\Rightarrow b=0\)

Lúc đó phương trình trở thành \(x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là 0

b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)

\(\Rightarrow3b-6=0\Leftrightarrow b=2\)

Lúc đó phương trình trở thành \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là -5

4 tháng 3 2020

a) Vì \(x=5\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:

\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)

Thay \(b=0\)vào phương trình ta được:

\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)

b) Vì \(x=3\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:

\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)

\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)

Thay \(b=2\)vào phương trình ta được:

\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)

4 tháng 3 2020

ĐK: \(x,y\ne0\)

\(pt\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\)

Do vai trò của x,y như nhau, không mất tính tổng quát, giả sử: \(x\ge y\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\Rightarrow\frac{3}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow3y\le4\Rightarrow y=1\)(vì \(y\inℕ^∗\))

Lúc đó thì \(1+\frac{1}{x}=\frac{3}{2}\Rightarrow\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)(tm)

Vậy có hai cặp số tự nhiên (x;y) thỏa mãn \(\left(1;2\right);\left(2;1\right)\)

4 tháng 3 2020

Vậy còn x<y thì sao???

4 tháng 3 2020

A = -4 - x2 + 6x = -(x2 - 6x + 9) + 5 = -(x - 3)2 + 5 \(\le\)\(\forall\) x

Dấu "=" xảy ra <=> x - 3  = 0 <=> x = 3

Vậy MaxA = 5 khi x = 3

F = (x - 1)(x - 3) + 11 = x2 - 4x + 3 + 11 = (x2 - 4x + 4) + 10 = (x - 2)2 + 10 \(\ge\)10 \(\forall\)x

Dấu "=" xảy ra <=> x  - 2 = 0 <=> x = 2

Vậy MinF = 10 khi x = 2

B = 3x2 - 5x + 7 = 3(x2 - 5/3x + 25/36) + 59/12 = 3(x - 5/3)2 + 59/12 \(\ge\)59/12 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/3 = 0 <=>  x = 5/3

Vậy MinB = 59/12 khi x = 5/3

G = (x - 3)2 + (x - 2)2 = x2 - 6x + 9 + x2 - 4x + 4 = 2x2 - 10x + 13 = 2(x2 - 5x + 25/4) + 1/2 = 2(x - 5/2)2 + 1/2 \(\ge\)1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/2 = 0 <=> x = 5/2

Vậy MinG = 1/2 khi x  = 5/2

4 tháng 3 2020

I K B A C D

Vì có hình vuông ABCD ( gt ) \(\Rightarrow\widehat{ADC}=90^o\)hay \(\widehat{IAC}=90^o\)( vì I \(\in\)tia đối của AD ) và \(AB//DC\)( t/c hình vuông )

Vì I \(\in\)tia đối của AD, AI = 2cm \(\Rightarrow ID=AD+IA=6+2=8cm\)

Áp dụng định lý Py-ta-go trong \(\Delta IDC\)\(\widehat{IDC}=90^o\)\(\Rightarrow ID^2+DC^2=IC^2\)

\(\Rightarrow8^2+6^2=IC^2\Rightarrow64+36=IC^2\Rightarrow IC^2=100\Rightarrow IC=\sqrt{100}=10\)( cm )

Áp dụng định lí Ta-lét trong \(\Delta IDC\)có AK // DC ( do AB // DC và K \(\in\)BC ) \(\Rightarrow\frac{IA}{AD}=\frac{IK}{KC}=\frac{2}{6}=\frac{1}{3}\)

Có \(\frac{IK}{KC}=\frac{1}{3}\)và IK + KC = IC = 10cm ( cmt )

\(\Rightarrow\orbr{\begin{cases}IK=10\div\left(3+1\right)=2,5\left(cm\right)\\KC=10-2,5=7,5\left(cm\right)\end{cases}}\)

5 tháng 3 2020

Cảm ơn bạn rất rất rất rất rất rất rất nhiều

4 tháng 3 2020

A M N B C 3cm

Ta có: \(\frac{AM}{AB}=\frac{1}{2}\)

\(\Rightarrow M\) là trung điểm \(AB\)

Xét \(\Delta ABC\)có:

\(M\) là trung điểm \(AB\)

\(MN//BC\)

\(\Rightarrow N\) là trung điểm \(AC\)

\(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow BC=2MN=2.3=6\left(cm\right)\)

Vậy \(BC=6cm\)

4 tháng 3 2020
Cảm ơn bạn nha
4 tháng 3 2020

- Ta có: \(\left(4x-5\right).\left(4x-5\right).\left(2x-3\right).\left(x-1\right)=9\)

    \(\Leftrightarrow\left[\left(4x-5\right).\left(4x-5\right)\right].\left[\left(2x-3\right).\left(x-1\right)\right]=9\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left(2x^2-5x+3\right)=9\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left[8.\left(2x^2-5x+3\right)\right]=8.9=72\)

    \(\Leftrightarrow\left(16x^2-40x+25\right).\left(16x^2-40x+24\right)-72=0\)(**)

- Đặt  \(a=16x^2-40x+24\)

- Thay \(a=16x^2-40x+24\)vào (**), ta có:

         \(\left(a+1\right).a-72=0\)

    \(\Leftrightarrow a^2+a-72=0\)

    \(\Leftrightarrow\left(a^2-8a\right)+\left(9a-72\right)=0\)

    \(\Leftrightarrow a.\left(a-8\right)+9.\left(a-8\right)=0\)

    \(\Leftrightarrow\left(a-8\right).\left(a+9\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}a-8=0\\a+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=8\\a=-9\end{cases}}}\)

+ Với \(a=8\) \(\Rightarrow16x^2-40x+24=8\)

                          \(\Leftrightarrow16x^2-40x+16=0\)

                          \(\Leftrightarrow\left(16x^2-32x\right)-\left(8x-16\right)=0\)

                          \(\Leftrightarrow16x.\left(x-2\right)-8.\left(x-2\right)=0\)

                          \(\Leftrightarrow\left(16x-8\right).\left(x-2\right)=0\)

                          \(\Leftrightarrow\orbr{\begin{cases}16x-8=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

+ Với \(a=-9\)\(\Rightarrow16x^2-40x+33=0\)

                              \(\Leftrightarrow\left(16x^2-40x+25\right)+8=0\)

                              \(\Leftrightarrow\left(4x-5\right)^2+8=0\)

- Vì \(\left(4x-5\right)^2\ge0\)\(\Rightarrow\left(4x-5\right)^2+8\ge8>0\)mà \(\left(4x-5\right)^2+8=0\)

         \(\Rightarrow\left(4x-5\right)^2+8=0\)( vô nghiệm )

Vậy \(S=\left\{\frac{1}{2};2\right\}\)

4 tháng 3 2020

\(\left(4x-5\right)\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow32x^4-160x^3+298x^2-245x+75=9\)

\(\Leftrightarrow32x^4-160x^3+298x^2-245x+75-9=0\)

\(\Leftrightarrow32x^4-160x^3+289x^2-245x+66=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(16x^2-40x+33\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)