K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

a) Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{x+y}\\v=\dfrac{1}{x-y}\end{matrix}\right.\left(1\right)\)

hệ phương trình trở thành \(\left\{{}\begin{matrix}2u+v=\dfrac{5}{3}\\6u-2v=1\end{matrix}\right.\)

Đây là hệ hai phương trình bậc nhất 2 ẩn, dùng phép cộng đại số để giải.

Sau khi giải ra u, v thế vào (1) để tìm \(x,y\).

b) Xét 2 trường hợp:

+) \(y\ge2\Rightarrow\left|y-2\right|=y-2\).

Phương trình đầu tiên trở thành \(3x-y+2=3\)

Đến đây bạn giải hệ hai phương trình bậc nhất hai ẩn nhé.

+) Tương tự, \(y\lt2\Rightarrow\left|y-2\right|=2-y\)

*Chú ý: tại mỗi trường hợp, đối chiếu nghiệm với điều kiện của y.

29 tháng 11 2022

A B C O H D E

a/

Xét tg vuông BHD và tg vuông OBD có

\(\widehat{ODB}\) chung

=> tg BHD đồng dạng với tg OBD

\(\Rightarrow\dfrac{BD}{DO}=\dfrac{DH}{BD}\Rightarrow BD^2=DH.DO\) (đpcm)

b/

Xét tg AEB có

\(\widehat{AEB}=90^o\) (góc nội tiếp chắn nửa đường tròn) (đpcm)

Ta có \(BD^2=HD.DO\) (cmt) (1)

Xét tg vuông BED và tg vuông ABD có

\(\widehat{ADB}\) chung

=> tg BED đồng dạng với tg ABD

\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DE}{BD}\Rightarrow BD^2=DE.DA\) (2)

Từ (1) và (2) => HD.DO = DE.DA (đpcm)

c/

Xét tg DBC có

DB=DC (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn)

=> tg DBC cân tại D 

Ta có \(DH\perp BC\) 

=> \(\widehat{ODC}=\widehat{ODB}\) (trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường phân giác)

Xét tg OCD và tg OBD có

DC=DB (cmt)

OD chung

\(\widehat{ODC}=\widehat{ODB}\) (cmt)

=> tg OCD = tg OBD (c.g.c)

\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\) => DC là tiếp tuyến của (O) (đpcm)

ta có

\(sđ\widehat{DCE}=\dfrac{1}{2}sđ\) cung CE (góc nt đường tròn)

\(sđ\widehat{CAD}=\dfrac{1}{2}sđ\) cung CE (góc nt đường tròn)

\(\Rightarrow\widehat{DCE}=\widehat{CAD}\) (1)

Xét tg ECD có \(\widehat{DEC}=180^o-\widehat{DCE}-\widehat{ADC}\) (2)

Xét tg DAC có \(\widehat{DCA}=180^o-\widehat{CAD}-\widehat{ADC}\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{DEC}=\widehat{DCA}\) (đpcm)

 

28 tháng 11 2022

`x-2sqrt{x-4}=4`              `đk : x>=4`

`<=> 2sqrt{x-4} = x-4`

`<=> 2*(x-4)=(x-4)^2`

`<=> 2x-8 = x^2 -8x +16`

`<=>2x-8-x^2+8x-16 =0`

`<=> -x^2 +10x -24 =0`

`<=> x^2 -10x +25 -1 =0`

`<=> (x-5)^2 =1`

`=> [(x-5=1),(x-5=-1):} =>[(x=6(t//m)),(x=4(t//m)):}`

Vậy `S={6;4}`

29 tháng 11 2022

Đặt \(\left\{{}\begin{matrix}a=3x^2-4x+1\\b=3x^2+2x+1\end{matrix}\right.\left(a,b\ne0\right)\Rightarrow x=\dfrac{a-b}{6}\).

Phương trình đã cho trở thành

\(\dfrac{2}{a}+\dfrac{13}{b}=\dfrac{36}{a-b}\\ \overset{\text{nhân chéo và rút gọn}}{\Rightarrow}2b^2-25ab-13a^2=0\\\Leftrightarrow\left(b-13a\right) \left(2b+a\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}b=13a\\a=-2b\end{matrix}\right..\)

Đến đây bạn thay ngược $x$ trở lại và giải tiếp nhé.

 

 

29 tháng 11 2022

Bạn nhân chéo rồi rút gọn thì được:

\(x^4-3x^3+3x+1=0\\ \Leftrightarrow(x^2-2x-1)(x^2-x-1)=0\)

Bạn tự giải tiếp nhé.

1 tháng 12 2022

GDgfdsgdfggdffdv

29 tháng 11 2022

https://olm.vn/cau-hoi/cmr-sqrt2sqrt3sqrt4sqrtsqrt2000-3.81719160658

Câu hỏi đã có người trả lời ở đây bạn nhé

DD
28 tháng 11 2022

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>\sqrt{a^2-b^2}+\sqrt{2b^2-b^2}\)

\(=\sqrt{a^2-b^2}+\sqrt{b^2}>\sqrt{a^2-b^2+b^2}=\sqrt{a^2}=a\).