1/2mũ2 + 1/4mũ2 + 1/6mũ2+...+1/100mũ2 <1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{n+4}{3n+5}\) (n \(\ne\) - \(\dfrac{5}{3}\))
A \(\in\) Z ⇔ n + 4 \(⋮\) 3n + 5
3(n + 4) ⋮ 3n + 5
3n + 12 ⋮ 3n + 5
3n + 5 + 7 ⋮ 3n + 5
7 ⋮ 3n + 5
3n + 5 \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
3n + 5 | - 7 | - 1 | 1 | 7 |
n | - 4 | - 2 | - \(\dfrac{4}{3}\) | \(\dfrac{2}{3}\) |
A = \(\dfrac{n+4}{3n+5}\) | 0 | - 2 | \(\dfrac{8}{3}\) | \(\dfrac{2}{3}\) |
A \(\in\) Z | loại | loại |
Theo bảng trên ta có n \(\in\) {-4; - 2}
Kết luận A = \(\dfrac{n+4}{3n+5}\) có giá trị nguyên khi và chi khi n \(\in\) {- 4; - 2}
Ta có:
Để \(\dfrac{n+4}{3n+5}\) đạt giá trị nguyên thì \(\left(n+4\right)⋮\left(3n+5\right)\)
\(\Rightarrow3\left(n+4\right)⋮3n+5\)
\(\Rightarrow\left(3n+5+7\right)⋮\left(3n+5\right)\)
\(\Rightarrow7⋮\left(3n+5\right)\)
\(\Rightarrow3n+5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow3n\in\left\{-12;-6;-4;2\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-\dfrac{4}{3};\dfrac{2}{3}\right\}\)
\(-\dfrac{3}{7}-\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{5}{4}\\ =\dfrac{3}{7}.\left(-1-\dfrac{1}{4}+\dfrac{5}{4}\right)\\ =\dfrac{3}{7}.0\\ =0\)
\(\dfrac{-3}{7}-\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{5}{4}\)
=\(\dfrac{-3}{7}-\dfrac{3}{28}+\dfrac{15}{28}\)
=\(\dfrac{-15}{28}+\dfrac{15}{28}\)
=\(0\)
\(#LilyVo\)
a.
Số học sinh loại tốt là:
\(50.30\%=15\) (học sinh)
Số học sinh loại khá là:
\(15.\dfrac{26}{15}=26\) (học sinh)
Số học sinh loại đạt là:
\(50-\left(15+26\right)=9\) (học sinh)
b.
Tỉ số phần trăm giữa học sinh loại đạt so với cả lớp là:
\(9:50.100\%=18\%\)
c.
Tỉ lệ phần trăm học sinh tốt và khá so với cả lớp là:
\(100\%-18\%=82\%\)
Do \(82\%< 90\%\) nên lớp 6A chưa đạt chỉ tiêu đề ra
Ba phần tư giá niêm yết có giá là:
\(300000.\dfrac{3}{4}=225000\) (đồng)
Giá vốn của mỗi chiếc áo là:
\(225000:\left(100\%+25\%\right)=180000\) (đồng)
Để lãi 40% so với giá vốn thì cửa hàng cần bán với mức giá là:
\(180000.\left(100\%+40\%\right)=252000\) (đồng)
(4,5 - 2x).(-1 4/7) = 11/14
(9/2 - 2x) . (-11/7) = 11/14
9/2 - 2x = 11/14 : (-11/7)
9/2 - 2x = -1/2
2x = 9/2 - (-1/2)
2x = 5
x = 5/2
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)\)
Đặt \(B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{50^2}< \dfrac{1}{49\cdot50}=\dfrac{1}{49}-\dfrac{1}{50}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
=>\(B=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< 2-\dfrac{1}{50}\)
=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{50}\right)=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}.\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{2}.\dfrac{1}{50}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]\)
Ta có:
\(\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2.2}< \dfrac{1}{2.1}=\dfrac{2-1}{2.1}=\dfrac{2}{2.1}-\dfrac{1}{2.1}=1-\dfrac{1}{2}\)
\(\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{3.2}=\dfrac{3-2}{3.2}=\dfrac{3}{3.2}-\dfrac{2}{3.2}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\left(\dfrac{1}{50}\right)^2=\dfrac{1}{50.50}< \dfrac{1}{50.49}=\dfrac{50-49}{50.49}=\dfrac{50}{50.49}-\dfrac{49}{50.49}=\dfrac{1}{49}-\dfrac{1}{50}\)
Khi đó
\(1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)
\(=\left(\dfrac{1}{2}\right)^2.\left[1+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{50}\right)^2\right]< \dfrac{1}{4}.2=\dfrac{1}{2}\)
Vậy \(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{6}\right)^2+...+\left(\dfrac{1}{100}\right)^2< \dfrac{1}{2}\left(đpcm\right)\)
Tick cho mk nha :>>