tìm giá trị nhỏ nhất của A = \(\frac{3x^2-8x+6}{x^2-2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2017-x|+|2018-x|+|2019-x|=2
nên sẽ có ít nhất 1 giá trị bằng 0
1. |2017-x|=0
2017-x=0
x=2017
=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)
2.|2018-x|=0
2018-x=0
x=2018
=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)
3.|2019-x|=0
2019-x=0
x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2
diện tích mảnh đất còn lại:
(30 x 60) x 84 : 100 = 504 ( m2 )
diện tích lối đi:
(30 x 60) - 504 = 600-504 = 96 ( m2 )
vì lối đi có chiều rộng không đổi (túc chiều rộng hình chữ nhật không đổi)nên bề rộng lối đi là
96 : 20 = 4,8 ( m )
Đáp số : ...
Gọi pt chung là ax+b=y
Có: \(\hept{\begin{cases}2a+b=-1\\-a+b=5\end{cases}}\)=> \(\hept{\begin{cases}a=-2\\b=3\end{cases}}\)
Từ đó ta có pt đường thẳng là -2x+3=y
\(ĐKXĐ:x\ne1\)
Ta có :
\(x^2-2x+1=\left(x-1\right)^2>0\)(TH = 0 bị loại)
\(\Rightarrow\)Để \(A_{min}\Leftrightarrow3x^2-8x+6\)min
Có :\(3x^2-8x+6=\left(\sqrt{3}x+\frac{4\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Dấu " = " xảy ra :
\(\Leftrightarrow\sqrt{3}x+\frac{4\sqrt{3}}{3}=0\)
\(\Leftrightarrow x=-\frac{4}{3}\)(tm)
Vậy \(A_{min}=\frac{\frac{2}{3}}{\left(-\frac{4}{3}-1\right)^2}=\frac{6}{49}\Leftrightarrow x=-\frac{4}{3}\)