Cho 3 số thực x,y,z#0, đôi một phân biệt và thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính P= \(\dfrac{yz}{x^2+2yz}+\dfrac{zx}{y^2+2zx}+\dfrac{xy}{z^2+2xy}\)
Giúp Mình Với :33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: và //
=>
⇒Góc AMB = 90 độ
Xét và có
Góc MQA = góc BQM (so le trong);
là cạnh chung;
Suy ra (g-c-g)
Suy ra góc MBQ = góc MAQ= 90 độ (2 góc tương ứng)
Xét tứ giác AMBQ có
Góc QAM = góc AMB = góc MBQ = 90 độ
=> tứ giác là hình chữ nhật.
b) Do tứ giác là hình chữ nhật
Mà P là trung điểm AB
=>P là trung điểm của MQ; AB = MQ
=> PQ = 1/2 AB (1)
Xét tam giác AIB vuông tại I và có IP là đường trung tuyến
=> IP = 1/2 AB(2)
Từ (1) và (2)
=> QP =IP
=> Tam giác PQI cân tại P
Diện tích xung quanh của kho chứa:
\(S_{xq}=p\cdot d=\dfrac{12+12+12}{2}\cdot8=144\left(m^2\right)\)
Diện tích cần sơn thực tế:
\(S_s=S_{xq}-S_c=144-5=139\left(m^2\right)\)
Số tiền cần dùng để hoàn thành việc sơn là:
\(T=S_s\cdot30000=4170000\left(đ\right)\)
Lời giải:
Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$
Tương tự với $y^2+2zx, z^2+2xy$ thì:
$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$
$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$