K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

ko biết

Nội dung 1. Cảnh ra khơi - Khung cảnh hoàng hôn trên biển vừa diễm lệ vừa hùng vĩ đầy sức sống. - Có sự đối lập giữa vũ trụ và con người: Vũ trụ nghỉ ngơi >< con người lao động. - Khí thế của những con người ra khơi đánh cá mạnh mẽ tươi vui, lạc quan, yêu lao động. - Diễn tả niềm vui yêu đời, yêu lao động, yêu cuộc sống tự do, tiếng hát của những con người làm chủ quê hương giàu đẹp. 2. Cảnh đánh cá - Khung cảnh biển đêm: Thoáng đãng lấp lánh, ánh sáng đẹp, vẻ đẹp lãng mạn kỳ ảo của biển khơi. - Biển đẹp màu sắc lấp lánh: Hồng trắng, vàng chóe, vảy bạc, đuôi vàng loé rạng đông. - Cảnh lao động với khí thế sôi nổi, hào hứng, khẩn trương, hăng say. - Tinh thần sảng khoái ung dung, lạc quan, yêu biển, yêu lao động. - Âm hưởng của tiếng hát là âm hưởng chủ đạo, niềm yêu say mê cuộc sống, yêu biển, yêu quê hương, yêu lao động. - Nhịp điệu khoẻ, đa dạng, cách gieo vần biến hoá, sự tưởng tượng phong phú, bút pháp lãng mạn. 3. Cảnh trở về (khổ cuối) Cảnh kỳ vĩ, hào hùng, khắc hoạ đậm nét vẻ đẹp khoẻ mạnh và thành quả lao động của người dân miền biển. - Ra đi hoàng hôn, vũ trụ vào trạng thái nghỉ ngơi. - Sau một đêm lao động miệt mài, họ trở về trong cảnh bình minh, mặt trời bừng sáng nhô màu mới, hình ảnh mặt trời cuối bài thơ là hình ảnh mặt trời rực rỡ với muôn triệu mặt trời nhỏ lấp lánh trên thuyền: Một cảnh tượng huy hoàng của thiên nhiên và lao động.

28 tháng 2 2020

Bạn kiểm tra lại đề bài.

28 tháng 2 2020

Cho hệ phương trình:

\(\hept{\begin{cases}3mx-y=3m^2-2m+1\\x+my=2m^2\end{cases}}\)

Tìm hệ thức liên hệ giữa x,y không phụ thuộc vào m

28 tháng 2 2020

x^3 - 3x^2 + x + 5 = 0

=> x^3 + x^2 - 4x^2 - 4x + 5x +  5 = 0

=> x^2(x + 1) - 4x(x + 1) + 5(x + 1) = 0

=> (x^2 - 4x + 5)(x + 1) = 0

x^2 - 4x + 5 > 0

=> x + 1 = 0

=> x = -1

28 tháng 2 2020

mơn bn nha uyên

28 tháng 2 2020

\(x^2+5x-2250=0\)

Ta có \(\Delta=5^2+4.2250=9025,\sqrt{9025}=95\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-5+95}{2}=45\\x=\frac{-5-95}{2}=-50\end{cases}}\)

28 tháng 2 2020

\(\left(3x+1\right)^2=3x+1\)

\(\Leftrightarrow\left(3x+1\right)^2-3x-1=0\)

\(\Leftrightarrow9x^2+6x+1-3x-1=0\)

\(\Leftrightarrow9x^2+3x=0\)

\(\Leftrightarrow3x\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}}\)

Vậy pt trên có tập nghiệm là \(S=\left(0;-\frac{1}{3}\right)\)

   #hok tốt# 

28 tháng 2 2020

bạn nhấn trên google rồi gõ geteasysolution,nhấn vào rồi bạn làm pt này nhanh lắm ,nó có cách giải luôn cho bạn,mình cũng đang sử dụng

28 tháng 2 2020

\(\Delta=\left(-5\right)^2-4.1.\left(-4500\right)=25+18000=18025>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt là:

\(x_1=\frac{-5-\sqrt{18025}}{2}=\frac{-5-5\sqrt{721}}{2}\)và \(x_2=\frac{-5+\sqrt{18025}}{2}=\frac{-5+5\sqrt{721}}{2}\)

Vậy \(x=\frac{-5\pm5\sqrt{721}}{2}\)

1.

The first term is,  x2  its coefficient is  1 .
The middle term is,  +5x  its coefficient is  5 .
The last term, "the constant", is  -4500 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -4500 = -4500 

Step-2 : Find two factors of  -4500  whose sum equals the coefficient of the middle term, which is   5 .

     -4500   +   1   =   -4499 
     -2250   +   2   =   -2248 
     -1500   +   3   =   -1497 
     -1125   +   4   =   -1121 
     -900   +   5   =   -895 
     -750   +   6   =   -744 


For tidiness, printing of 30 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

2.2.1      Find the Vertex of   y = x2+5x-4500

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero). 

 Each parabola has a veral line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -2.5000  

 Plugging into the parabola formula  -2.5000  for  x  we can calculate the  y -coordinate : 
  y = 1.0 * -2.50 * -2.50 + 5.0 * -2.50 - 4500.0
or   y = -4506.250

3.

Root plot for :  y = x2+5x-4500
Axis of Symmetry (dashed)  {x}={-2.50} 
Vertex at  {x,y} = {-2.50,-4506.25} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-69.63, 0.00} 
Root 2 at  {x,y} = {64.63, 0.00} 

Solve Quadra Equation by Completing The Square

 2.2     Solving   x2+5x-4500 = 0 by Completing The Square .

 Add  4500  to both side of the equation :
   x2+5x = 4500

Now the clever bit: Take the coefficient of  x , which is  5 , divide by two, giving  5/2 , and finally square it giving  25/4 

Add  25/4  to both sides of the equation :
  On the right hand side we have :
   4500  +  25/4    or,  (4500/1)+(25/4) 
  The common denominator of the two fractions is  4   Adding  (18000/4)+(25/4)  gives  18025/4 
  So adding to both sides we finally get :
   x2+5x+(25/4) = 18025/4

Adding  25/4  has completed the left hand side into a perfect square :
   x2+5x+(25/4)  =
   (x+(5/2)) • (x+(5/2))  =
  (x+(5/2))2
Things which are equal to the same thing are also equal to one another. Since
   x2+5x+(25/4) = 18025/4 and
   x2+5x+(25/4) = (x+(5/2))2
then, according to the law of transitivity,
   (x+(5/2))2 = 18025/4

We'll refer to this Equation as  Eq. #2.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x+(5/2))2   is
   (x+(5/2))2/2 =
  (x+(5/2))1 =
   x+(5/2)

Now, applying the Square Root Principle to  Eq. #2.2.1  we get:
   x+(5/2) = √ 18025/4

Subtract  5/2  from both sides to obtain:
   x = -5/2 + √ 18025/4

Since a square root has two values, one positive and the other negative
   x2 + 5x - 4500 = 0
   has two solutions:
  x = -5/2 + √ 18025/4
   or
  x = -5/2 - √ 18025/4

Note that  √ 18025/4 can be written as
  √ 18025  / √ 4   which is √ 18025  / 2

4. 2.3     Solving    x2+5x-4500 = 0 by the Quadra Formula .

 According to the Quadra Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case,  A   =     1
                      B   =    5
                      C   =  -4500

Accordingly,  B2  -  4AC   =
                     25 - (-18000) =
                     18025

Applying the quadra formula :

               -5 ± √ 18025
   x  =    ———————
                        2

Can  √ 18025 be simplified ?

Yes!   The prime factorization of  18025   is
   5•5•7•103 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 18025   =  √ 5•5•7•103   =
                ±  5 • √ 721

  √ 721   , rounded to 4 decimal digits, is  26.8514
 So now we are looking at:
           x  =  ( -5 ± 5 •  26.851 ) / 2

Two real solutions:

 x =(-5+√18025)/2=(-5+5√ 721 )/2= 64.629

or:

 x =(-5-√18025)/2=(-5-5√ 721 )/2= -69.629

28 tháng 2 2020

\(x^2+5x+4500=0\)

\(\Delta=b^2-4ac=5^2-4.1.4500=25-18000=-17975\)

Vì \(\Delta=-17975< 0\)nên phương trình vô nghiệm

Hok tốt

27 tháng 2 2020

Cách 1:

\(2H_2O\rightarrow2H_2+O_2\)

\(Fe_2O_3+3H_2\rightarrow2Fe+3H_2O\)