Đầu năm anh Tuấn mua một chiếc Laptop anh đã trả trước 2/5 số tiền của chiếc Laptop, số tiền còn lại anh trả theo hình thức trả góp không lãi suất trong 12 tháng ( tức là mỗi tháng anh phải trả số tiền như nhau). Sau 7 tháng anh trả thêm 14 triệu đồng. Hỏi giá trị chiếc laptop là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
\(\left\{{}\begin{matrix}x+y=2\\y+z=3\\x+z=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2-y\\z=3-y\\2-y+3-y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\z=3-y\\5-2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y=10\\x=2-y\\z=3-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=2-5=-3\\z=3-5=-2\end{matrix}\right.\)
Bài 8:
a: \(\left(x+3\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x+3=0
=>x=-3
b:
\(\left(x^2+2\right)\left(x-4\right)=0\)
mà \(x^2+2>=2>0\forall x\)
nên x-4=0
=>x=4
c: \(\left(x+5\right)\left(9+x^2\right)< 0\)
mà \(x^2+9>=9>0\forall x\)
nên x+5<0
=>x<-5
mà x là số nguyên
nên \(x\in\left\{...;-7;-6\right\}\)
Bài 9:
a: \(ax+ay+bx+by\)
=a(x+y)+b(x+y)
=(x+y)(a+b)
\(=-2\cdot17=-34\)
b: ax-ay+bx-by
=a(x-y)+b(x-y)
=(x-y)(a+b)
\(=-1\cdot\left(-7\right)=7\)
AB//CD
=>ΔMBA~ΔMDC
=>\(\dfrac{S_{MBA}}{S_{MDC}}=\left(\dfrac{BA}{DC}\right)^2=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
=>\(S_{MDC}=9\times S_{MBA}=108\left(cm^2\right)\)
Ta có: \(S_{MAB}+S_{ABCD}=S_{MDC}\)
=>\(S_{ABCD}=108-12=96\left(cm^2\right)\)
1x2=2 có chữ số tận cùng là 2
1x2x3=6 có chữ số tận cùng là 6
1x2x3x4=24 có chữ số tận cùng là 4
1x2x3x4x5=120 có chữ số tận cùng là 0
...
1x2x3x...x300 có chữ số tận cùng là 0
Do đó: Chỉ có 1 cách để cho tích này có chữ số tận cùng là 3 là bỏ hết các số từ 4 đến 300; sau đó bỏ tiếp số 2 nữa
=>Cần phải bỏ 300-4+1+1=296+2=298 số
\(P=x^2-4xy+5y^2+10x-22y+30=\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+10\left(x-2y\right)+29\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+4=\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+4\ge4\)
\(\Rightarrow P_{min}=4\)
\(x-y=-3\Leftrightarrow x+3=y\)
\(P=x^2\left(x+3\right)+y^2-x^2y-xy+x-4y+2003=\)
\(=x^2y+y^2-x^2y-xy+x-4y+2023=\)
\(=y^2-xy-3y+x-y+2023=\)
\(=y^2-y\left(x+3\right)+x-y+2003=\)
\(=y^2-y^2+\left(x-y\right)+2023=-3+2023=2000\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC};cosC=\dfrac{AC}{BC}\)
\(AB\cdot cosB+AC\cdot cosC\)
\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
giúp mik đi ạ mình cần gấp
Đây là toán nâng cao chuyên đề phân số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng tư duy logic ngược như sau:
Giải:
Sau khi trả trước hai phần ba số tiền của laptop, cứ mỗi tháng anh Tuấn cần thanh toán số tiền là:
14 : 7 = 2 (triệu)
Số tiền mà anh Tuấn cần trả góp trong mười hai tháng là:
2 x 12 = 24 (triệu)
Hai mươi tư triệu ứng với phân số là:
1 - \(\dfrac{2}{5}\) = \(\dfrac{3}{5}\) (số tiền mua laptop)
Chiếc laptop đó có giá tiền là:
24 : \(\dfrac{3}{5}\) = 40 (triệu)
Kết luận chiếc lap top đó có giá là 40 triệu đồng.