Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do SA là tiếp tuyến tại A của (O) nên \(\widehat{OAS}=90^o\). Tương tự, ta có \(\widehat{OBS}=90^o\), suy ra \(\widehat{OAS}+\widehat{OBS}=180^o\). Do đó tứ giác SAOB nội tiếp. (đpcm)
Mặt khác, trong đường tròn (O) có M là trung điểm của dây EF nên \(OM\perp EF\) tại M hay \(\widehat{OMS}=90^o\). Từ đó suy ra \(\widehat{OMS}=\widehat{OAS}\),từ đó tứ giác OMAS nội tiếp. Vì vậy 5 điểm O, M, A, S, B cùng thuộc một đường tròn \(\Rightarrow\) Tứ giác SAMO nội tiếp (đpcm)
b) Ta thấy tứ giác OMAB nội tiếp nên \(\widehat{PMA}=\widehat{PBO}\). Từ đó dễ dàng suy ra \(\Delta PAM~\Delta POB\left(g.g\right)\Rightarrow\dfrac{PA}{PO}=\dfrac{PM}{PB}\) \(\Rightarrow PA.PB=PO.PM\) (đpcm)
c) Do tứ giác SAMB nội tiếp nên \(\widehat{SMB}=\widehat{SAB}\) và \(\widehat{SMA}=\widehat{SBA}\). Mặt khác, trong đường tròn (O), có 2 tiếp tuyến tại A và B cắt nhau tại S nên \(SA=SB\) hay \(\Delta SAB\) cân tại S \(\Rightarrow\widehat{SAB}=\widehat{SBA}\) \(\Rightarrow\widehat{SMB}=\widehat{SMA}\) hay MI là phân giác trong của \(\widehat{AMB}\) . Lại có \(MP\perp MI\) nên MP là phân giác ngoài của \(\widehat{AMB}\). Áp dụng tính chất đường phân giác, ta thu được \(\dfrac{IA}{IB}=\dfrac{MA}{MB}\) và \(\dfrac{PA}{PB}=\dfrac{MA}{MB}\). Từ đây suy ra \(\dfrac{IA}{IB}=\dfrac{PA}{PB}\) \(\Rightarrow PA.IB=PB.IA\) (đpcm)
Đề thi chuyên SP hả em, bài này sử dụng Liên hợp với đánh giá em nhé:
Đầu tiên trừ 2 về mình có là
\(x\sqrt{y+4}+x\sqrt{y+11}-y\sqrt{x+4}-y\sqrt{x+11}=0\)
Từ hệ mình dễ dàng suy ra đc x,y>0
Anh liên hợp cho 1 cái nha
\(x\sqrt{y+4}-y\sqrt{x+4}=\sqrt{x^2y+4x^2}-\sqrt{y^2x+4y^2}=\dfrac{x^2y-y^2x+4x^2-4y^2}{\sqrt{.........}+\sqrt{.......}}=\left(x-y\right).\dfrac{xy+4x+4y}{\sqrt{.........}+\sqrt{............}}\)
Cái kia em cx liên hợp tương tự, đặt x-y của cả 2 cái khi liên hợp xong phương trình sẽ là
\(\left(x-y\right)\left(\dfrac{xy+4x+4y}{\sqrt{...}+\sqrt{...}}+\dfrac{xy+11x+11y}{\sqrt{........}+\sqrt{.....}}\right)=0\) Cái trong ngoặc to đùng hiển nhiên >0 với x,y>0. DO đó x-y=0 hay x=y
EM thế vào phương trình ban đầu thì có \(x\sqrt{x+4}+x\sqrt{x+11}=35\)
Đến đây thì nhẩm đc x=5 thoả mãn em giải bằng đánh giá:
Với x=5 suy ra......=35
Với x>5 suy ra......>35
Với x<5 suy ra.....<35
Kết luận đc x=5, do đó y=5
Note: hướng làm em nhé, bổ sung thêm điều kiện xác định linh tinh zô
Ta dễ dàng kiểm tra được các số chính phương dạng \(\left(2n\right)^2\) luôn chia hết cho 4 còn các số chính phương dạng \(\left(2n+1\right)^2\) luôn chia 4 dư 1. Do trong 6 số liên tiếp luôn tồn tại 3 số chẵn và 3 số lẻ nên tổng của chúng sẽ chia 4 dư 3, do đó không phải là số chính phương.
Gọi cạnh góc vuông bé là \(x\) ( cm) ; \(x\) > 0
Thì cạnh góc vuông lớn là \(x\times\) 3 = 3\(x\)
Diện tích của tam giác vuông khi đó là: 3\(x\) \(\times\) \(x\) = 3\(x^2\)
Theo bài ra ta có: 3\(x^2\) = 150 ⇒ \(x^2\) = 150 : 3 ⇒ \(x^2\) = 50
Theo py ta go ta có:
Độ dài cạnh huyền là: \(\sqrt{x^2+\left(3x\right)^2}\) = \(\sqrt{10x^2}\) = \(\sqrt{10.50}\) = 10\(\sqrt{5}\)
Kết luận độ dài cạnh huyền là: 10\(\sqrt{5}\)(cm)