Cho a, b,c, x, y, z là các số thực khác 0 thỏa mãn\(\hept{\begin{cases}x+y+z=0\\a+b+c=0\\\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\end{cases}}\)
Tính \(P=\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ BA giao với DC tại S
c minh AB=AS
IC=IK,KH=HC
IH vuông góc với CK
suy ra diện tích tam giác
BIK=1/2 KI.BK=1/4BK.CK
CHD=1/2HI.CK=1/4BK>CK
là chuyền đặc điểm của thế hệ trước cho thế hệ sau
vd bố và con có một đôi tai (cái mũi )rất giống nhau
Cho \(\Delta ABC\)cân tại A và \(\widehat{BAC}=36^o\). Chứng minh rằng \(\frac{BA}{BC}\)là số vô tỉ.
Em nghĩ đề là \(BC\ge\frac{AB+AC}{\sqrt{2}}\)
Theo định lí Pythagoras và BĐT Cauchy-Schwarz dạng Engel:
\(BC^2=AB^2+AC^2\ge\frac{\left(AB+AC\right)^2}{2}\)
\(\Rightarrow BC\ge\frac{AB+AC}{\sqrt{2}}\)
Đẳng thức xảy ra khi AB = AC hay tam giác ABC vuông cân tại A.
P/s: Is that true?
tth_new cảm ơn bạn vì đã giúp mình giải bài này nhưng đề mình đưa ra là đúng ạ!