-2x^4+3x^5+x^3+4x+14x^4-6x^5-x^3+x+10
a thu gọn bt và sắp xếp các hạng tử của đa thức theo luỹ thừa giảm dần của biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh tam giác là tam giác cân, ta có thể chứng minh:
- Tam giác có hai cạnh bằng nhau.
- Tam giác có hai góc bằng nhau.
- Tam giác có hai trong bốn đường: đường trung tuyến, đường trung trực, đường cao, đường phân giác cùng xuất phát từ một đỉnh.
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
=>BA=BD
mà BA>BH(ΔBAH vuông tại H)
nên BH<BD
=>H thuộc đoạn BD
b: Ta có: ΔBAE=ΔBDE
=>EA=ED
=>E nằm trên đường trung trực của AD(1)
Ta có: BA=BD
=>B nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
c: Xét ΔBAD có
BE,AH là các đường cao
BE cắt AH tại O
Do đó: O là trực tâm của ΔBAD
=>DO\(\perp\)AB
mà AC\(\perp\)AB
nên DO//AC
d: Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHDA vuông tại H)
mà \(\widehat{BAD}=\widehat{BDA}\)(BA=BD)
nên \(\widehat{CAD}=\widehat{HAD}\)
=>AD là phân giác của góc HAC
Xét ΔAHC có AD là phân giác
nên \(\dfrac{DH}{DC}=\dfrac{AH}{AC}\)
mà AH<AC
nên DH<DC
Có: \(A\left(x\right)=x^4+2x^2-x\) và \(B\left(x\right)=-x^4-\dfrac{1}{2}x^2+2x-8\)
+, \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=\left(x^4+2x^2-x\right)+\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)\)
\(=x^4+2x^2-x-x^4-\dfrac{1}{2}x^2+2x-8\)
\(=\dfrac{3}{2}x^2+x-8\)
+, \(D\left(x\right)=B\left(x\right)-A\left(x\right)\)
\(=\left(-x^4-\dfrac{1}{2}x^2+2x-8\right)-\left(x^4+2x^2-x\right)\)
\(=-x^4-\dfrac{1}{2}x^2+2x-8-x^4-2x^2+x\)
\(=-2x^4-\dfrac{5}{2}x^2+3x-8\)
b) Ta có: \(C\left(x\right)=\dfrac{3}{2}x^2+x-8\)
\(\Rightarrow C\left(2\right)=\dfrac{3}{2}\cdot2^2+2-8=0\)
\(\Rightarrow x=2\) là 1 nghiệm của \(C\left(x\right)\)
c) Có: \(E\left(x\right)+D\left(x\right)=2x^4\)
\(\Rightarrow E\left(x\right)=2x^4-D\left(x\right)\)
\(=2x^4-\left(-2x^4-\dfrac{5}{2}x^2+3x-8\right)\)
\(=2x^4+2x^4+\dfrac{5}{2}x^2-3x+8\)
\(=4x^4+\dfrac{5}{2}x^2-3x+8\)
a: Ta có: DE\(\perp\)AC
AB\(\perp\)AC
Do đó: DE//AB
=>\(\widehat{CHE}=\widehat{CBA}=65^0\)
b: Sửa đề: ΔBAD cân
Xét ΔBIA vuông tại I và ΔBID vuông tại I có
BI chung
IA=ID
Do đó; ΔBIA=ΔBID
=>BA=BD
=>ΔBAD cân tại B
c: Xét ΔCAD có
CI,DE là các đường cao
CI cắt DE tại H
Do đó: H là trực tâm của ΔCAD
=>AH\(\perp\)CD
\(\left(x-5\right)\left(x+1\right)-x\left(x-7\right)=2x+1\)
\(\Leftrightarrow x^2+x-5x-5-\left(x^2-7x\right)=2x+1\)
\(\Leftrightarrow x^2-4x-5-x^2+7x=2x+1\)
\(\Leftrightarrow-4x+7x-2x=1+5\)
\(\Leftrightarrow x=6\)
a.
\(P\left(x\right)=5x^4+x^3+4x^2+4x-6\)
\(P\left(x\right)\) có bậc 4, hệ số cao nhất là 5 và hệ số tự do là -6
\(Q\left(x\right)=-5x^4-x^3-4x^2-3x+2\)
Q(x) có bậc 4, hệ số cao nhất là -5, hệ số tự do là 2
b.
\(M\left(x\right)-P\left(x\right)=Q\left(x\right)\Rightarrow M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Rightarrow M\left(x\right)=x-4\)
c.
\(M\left(x\right)=0\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy \(x=4\) là nghiệm của đa thức M(x)
Do tam giác ABC đều và G là trọng tâm nên \(\widehat{AGB}=\widehat{BGC}=\widehat{CGA}\)
Mà \(\widehat{AGB}+\widehat{BGC}+\widehat{CGA}=360^0\)
\(\Rightarrow3\widehat{BGC}=360^0\)
\(\Rightarrow\widehat{BGC}=120^0\)
\(x^3\) + \(x^2\) + 7x
Ta có:
P ( x )= [ x ( \(x^3\) + \(x^2\) + 7x ) = 0 ]
P (x) = [ \(x^4\) + \(x^3\) + \(7x^2\) = 0 ]
Giải phương trình:
1. ( \(x^4\) = 0 ): Ta có nghiệm ( x = 0)
2. ( \(x^3\) = 0): Ta có nghiệm ( x = 0 )
3. ( \(7x^2\) = 0 ): Ta có nghiệm ( x = 0 )
=> Nghiệm là x = 0
Vậy nghiệm của đa thức P (x) là x = 0
Đặt P(x)=0
=>\(x^3+x^2+7x=0\)
=>\(x\left(x^2+x+7\right)=0\)
mà \(x^2+x+7=x^2+x+\dfrac{1}{4}+\dfrac{27}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>=\dfrac{27}{4}\forall x\)
nên x=0
a: ΔABC vuông cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC
ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
Xét ΔDAB vuông tại D có \(\widehat{DBA}=45^0\)
nên ΔDAB vuông cân tại D
Xét ΔDAC vuông tại D có \(\widehat{DCA}=45^0\)
nên ΔDAC vuông cân tại D
b: Ta có: \(\widehat{EAB}+\widehat{EAC}=90^0\)
\(\widehat{EAC}+\widehat{FCA}=90^0\)
Do đó: \(\widehat{EAB}=\widehat{FCA}\)
Xét ΔEAB vuông tại E và ΔFCA vuông tại F có
AB=CA
\(\widehat{EAB}=\widehat{FCA}\)
Do đó: ΔEAB=ΔFCA
=>EB=FA
c: Xét tứ giác AEDB có \(\widehat{AEB}=\widehat{ADB}=90^0\)
nên AEDB là tứ giác nội tiếp
=>\(\widehat{AED}+\widehat{ABD}=180^0\)
mà \(\widehat{AED}+\widehat{MED}=180^0\)(kề bù)
nên \(\widehat{MED}=\widehat{MBA}=45^0\)
Xét tứ giác ADFC có \(\widehat{ADC}=\widehat{AFC}=90^0\)
nên ADFC là tứ giác nội tiếp
=>\(\widehat{ACD}=\widehat{AFD}=45^0\)
Xét ΔDEFcó \(\widehat{DEF}=\widehat{DFE}=45^0\)
nên ΔDEF vuông cân tại D
\(-2x^4+3x^5+x^3+4x+14x^4-6x^5-x^3+x+10\)
\(=\left(3x^5-6x^5\right)+\left(-2x^4+14x^4\right)+\left(x^3-x^3\right)+\left(4x+x\right)+10\)
\(=-3x^5+12x^4+5x+10\)
`#NqHahh`
-2x⁴ + 3x⁵ + x³ + 4x + 14x⁴ - 6x⁵ - x³ + x + 10
= (3x⁵ - 6x⁵) + (-2x⁴ + 14x⁴) + (x³ - x³) + (4x + x) + 10
= -3x⁵ + 12x⁴ + 5x + 10