một mảnh đất hình chữ nhật có độ dài đường chéo là 5m, chiều rộng là 1m. tính diện tích hình chữ nhật đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ đường cao AH của tam giác ABD => AH=14,4cm
Pytago => AD^2-AH^2=DH^2
=> DH^2=116,64
=> DH=10,8cm
HT lượng => HA^2=HB.HC
=> HB=HA^2/HB=14,4^2/10,8=19,2cm
=> BD=HD+HB=10,8+19,2=30m
Pytago => AB^2=AH^2+HB^2=576
=> AB=24cm
=> chu vi HCN ABCD là: 2(AB+AD)=2(18+24)=84(cm^2)
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
\(\dfrac{1}{x}\)+ 2\(\sqrt{x-8}\)
ĐK: \(x\) ≠ 0; \(x\) - 8 ≥ 0; ⇒ \(x\) ≥ 8 vậy \(x\) ≥ 8
Đk: 2-x ≥ 0 hay x ≤ 2
Đặt \(\sqrt{2-x}=t\) với t ≥ 0
PT tương đương
t -3t+ 4t = 16
\(\Leftrightarrow\)2t = 16
\(\Rightarrow\) t = 8 (TMĐK)
Vậy \(\sqrt{2-x}=8\)
2 - x = 64
vậy x = -62
\(\sqrt{2x-1}\) - \(\sqrt{8x-4}\) + \(\sqrt{50x-25}\) = 24 đk \(x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}\) - \(\sqrt{4.\left(2x-1\right)}\) + \(\sqrt{25.\left(2x-1\right)}\) = 24
\(\sqrt{2x-1}\) - 2\(\sqrt{2x-1}\) + 5\(\sqrt{2x-1}\) = 24
\(\sqrt{2x-1}\) (1 - 2 + 5) = 24
4\(\sqrt{2x-1}\) = 24
\(\sqrt{2x-1}\) = 24: 4
\(\sqrt{2x-1}\) = 6
\(2x-1=36\)
2\(x\) = 37
\(x=\dfrac{37}{2}\) (thỏa mãn)
Vậy \(x=\dfrac{37}{2}\)
\(\sqrt{x-1}\) - \(\sqrt{9x-9}\) + \(\sqrt{16x-16}\) = 4 (đk \(x\ge\)1)
\(\sqrt{x-1}-\) \(\sqrt{9\left(x-1\right)}\) + \(\sqrt{16\left(x-1\right)}\) = 4
\(\sqrt{x-1}\) - 3\(\sqrt{x-1}\) + \(4\sqrt{x-1}\) = 4
\(\sqrt{x-1}\)( 1 - 3 + 4 ) = 4
\(\sqrt{x-1}\) . 2 = 4
\(\sqrt{x-1}\) = 4 : 2
\(\sqrt{x-1}\) = 2
\(x-1\) =4
\(x=4+1\)
\(x=5\) (thỏa mãn)
Vậy \(x\) = 5
\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10 đk \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3
\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10
\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10
(1 + 3 - 2)\(\sqrt{x+3}\) = 10
2\(\sqrt{x+3}\) = 10
\(\sqrt{x+3}\) = 10: 2
\(\sqrt{x+3}\) = 5
\(x+3\) = 10
\(x\) = 10 - 3
\(x\) = 7 ( thỏa mãn)
Vậy \(x\) = 7
\(\sqrt{x+2}\) + \(\sqrt{16x+32}\) - \(\sqrt{4x+8}\) = 16 (đk \(x\ge\) -2)
\(\sqrt{x+2}\) + \(\sqrt{16\left(x+2\right)}\) - \(\sqrt{4\left(x+2\right)}\) = 16
\(\sqrt{x+2}\) + 4\(\sqrt{x+2}\) - 2\(\sqrt{x+2}\) = 16
( 1 + 4 - 2)\(\sqrt{x+2}\) = 16
3\(\sqrt{x+2}\) = 16
\(\sqrt{x+2}\) = \(\dfrac{16}{3}\)
\(x+2\) = \(\dfrac{256}{9}\)
\(x\) = \(\dfrac{256}{9}\) - 2
\(x\) = \(\dfrac{238}{9}\) (thỏa mãn)
Vậy \(x=\dfrac{238}{9}\)
Ta thấy \(A-4=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-4\)
\(=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\sqrt{x}>0\) nên \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\). ĐTXR \(\Leftrightarrow x=1\).
Như vậy \(A-4\ge0\) \(\Leftrightarrow A\ge4\)
(không phải là \(A>4\) như trong đề đâu nhé, dấu "=" vẫn có thể xảy ra nếu \(x=1\))
Chiều dài hình chữ nhật là:
\(\sqrt{5^2-1^2}=5\left(m\right)\)
Diện tích hình chữ nhật là:
\(5\cdot1=5\left(m^2\right)\)
Đáp số: \(5m^2\)