K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=3^2+4^2\)

\(=25\)

\(\Rightarrow BC=5\left(cm\right)\)

Đường trung tuyến AM là đường trung tuyến ứng với cạnh huyền BC

\(\Rightarrow AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)

Chọn C

30 tháng 11 2023

\(\dfrac{-2x^2-2x}{1-x^2}=\dfrac{-2x\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}\)

\(=\dfrac{-2x}{1-x}\)

\(=\dfrac{2x}{x-1}\)

Chọn B và C

30 tháng 11 2023

ĐKXĐ:

\(2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne\dfrac{6}{2}\)

\(\Leftrightarrow x\ne3\)

Chọn A

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$

29 tháng 11 2023

\(x\).(\(x\) + 2) + (\(x\) + 2)

\(x\).(\(x\) + 2) + (\(x\) + 2).1

= (\(x\) + 2).(\(x\) + 1)

= (\(x\) + 1).(\(x\) + 2)

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$

$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$ 

Ta có đpcm.

28 tháng 11 2023

a)ta có:

AB=DC mà AE=1/2 AB, KC= 1/2 DC

=>AE=KC

Xét tứ giác AECK, ta có: 

AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)

=>tứ giác AECK là hình bình hành.

b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp

29 tháng 11 2023

DF VUÔNG GÓC CE, DF vuông góc AK

29 tháng 11 2023

A H K B C D I F

1/

Ta có

\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)

Xét tg vuông ADH và tg vuông BCK có

AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)

AD=BC (cạnh đối hbh)

=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)

Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

2/ 

Ta có

AH//CK (cmt) => AI//CF

AB//CD (cạnh đối hbh) => AF//CI

=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)

4/ Xét hbh AHCK có

AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK

Mà O cũng là trung điểm HK

=> \(O\equiv O'\) => A; O; C thẳng hàng

5/

Xét hbh AHCK có

AC cắt HK tại O (cmt) => OA=OC

Xét hbh ABCD có

OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> AC; BD; IF đồng quy