ta có thể viết :1,5 =3/2=6/4=9/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAC và ΔDMB có
DA=DM
\(\widehat{ADC}=\widehat{MDB}\)(hai góc đối đỉnh)
DC=DB
Do đó: ΔDAC=ΔDMB
=>\(\widehat{DCA}=\widehat{DBM}\)
=>CA//BM
b: Xét ΔDNC và ΔDKB có
\(\widehat{DCN}=\widehat{DBK}\)
DC=DB
\(\widehat{NDC}=\widehat{KDB}\)(hai góc đối đỉnh)
Do đó: ΔDNC=ΔDKB
=>DN=DK
=>D là trung điểm của NK
a: Thời gian dự định sẽ đi hết quãng đường là:
120:50=2,4(giờ)=2h24p
Nếu đúng dự định thì ô tô sẽ đến B lúc:
7h+2h24p=9h24p
b: Đặt AC=x
BC=AB-AC=120-x(km)
Thời gian ô tô đi hết quãng đường AC là \(\dfrac{x}{50}\left(giờ\right)\)
Thời gian ô tô đi hết quãng đường BC là: \(\dfrac{120-x}{60}\left(giờ\right)\)
Ô tô đến B sớm hơn dự kiến 5p nên ta có: \(\dfrac{x}{50}+\dfrac{1}{12}+\dfrac{120-x}{60}=2,4-\dfrac{1}{12}\)
=>\(\dfrac{x}{50}+\dfrac{120-x}{60}=2,4-\dfrac{1}{6}=\dfrac{12}{5}-\dfrac{1}{6}=\dfrac{72-5}{30}=\dfrac{67}{30}\)
=>\(\dfrac{6x+5\left(120-x\right)}{300}=\dfrac{670}{300}\)
=>6x+5(120-x)=670
=>x+600=670
=>x=70(nhận)
Vậy: Độ dài quãng đường AC là 70km
a:
ĐKXĐ: \(x\notin\left\{1;-3\right\}\)
\(A=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right):\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(=\left(\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right):\dfrac{x^2+x+1-x^2+2}{x^2+x+1}\)
\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+3}\)
\(=\dfrac{x^2-x}{\left(x-1\right)}\cdot\dfrac{1}{x+3}=\dfrac{x}{x+3}\)
b: |x-5|=2
=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Khi x=7 thì \(A=\dfrac{7}{7+3}=\dfrac{7}{10}\)
c: Để A nguyên thì \(x⋮x+3\)
=>\(x+3-3⋮x+3\)
=>\(-3⋮x+3\)
=>\(x+3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-2;-4;0;-6\right\}\)
\(8x-2^2=12\)
=>8x-4=12
=>8x=12+4=16
=>\(x=\dfrac{16}{8}=2\)
`8x - 2^2 = 12`
`=> 8x - 4 = 12`
`=> 8x = 12 + 4 `
`=> 8x = 16`
`=> x = 16 : 8`
`=> x = 2 `
Vậy `x =2`
Gọi chiều dài mảnh đất là x(m), chiều rộng mảnh đất là y(m)
(Điều kiện: x>0; y>0;x>y)
Diện tích mảnh đất là 60m2 nên xy=60
Nếu giảm bớt mỗi cạnh đi 2m thì diện tích còn lại là 32m2 nên ta có:
(x-2)(y-2)=32
=>xy-2x-2y+4=32
=>60-2x-2y+4=32
=>64-2(x+y)=32
=>2(x+y)=32
=>x+y=16
mà xy=60
nên x,y là các nghiệm của phương trình:
\(a^2-16a+60=0\)
=>(a-6)(a-10)=0
=>\(\left[{}\begin{matrix}a=6\\a=10\end{matrix}\right.\)
mà x>y
nên x=10;y=6
vậy: Chiều dài là 10m; chiều rộng là 6m
Sửa đề: \(\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{96\cdot101}\)
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{96\cdot101}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)
\(=5\left(1-\dfrac{1}{101}\right)=5\cdot\dfrac{100}{101}=\dfrac{500}{101}\)
\(\dfrac{5^2}{6.1}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right) \\ =5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ =5.\left(1-\dfrac{1}{101}\right)\\ =5.\dfrac{100}{101}\\ =\dfrac{500}{101}\)
Hiệu phân số của lần 1 và lần 2 so với :
\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\left(chiều.dài.dây\right)\)
Độ chênh lệch độ cao so với miệng giếng của lần 1 và lần 2 là :
\(6+1=7\left(m\right)\)
Chiều dài của sợi dây là :
\(6x7=42\left(m\right)\)
Độ sâu của giếng là :
\(42:3+1=15\left(m\right)\)
Đáp số : \(15m\)
1,5 = 30/20 = 60/40 = 90/60
cảm ơn