Để kéo đường dây điện băng qua một hồ nước hình chữ nhật ABCD với độ dài AB = 200m, AD = 180m, người ta dự định làm 4 cột điện liên tiếp cách đều. Cột thứ nhất nằm trên bờ AB và cách đỉnh A là 20m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng 30m. Tính khoảng cách từ vị trí cột thứ hai, thứ ba đến các bờ AB, AD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ đồ thị, ta thấy \(A\left(0;4\right),B\left(3;0\right),C\left(0;-4\right),D\left(-3;0\right)\)
b) Ta thấy O đồng thời là trung điểm của AC và II' nên AICI' là hình bình hành \(\Rightarrow\) AI' // CI hay AI' // BC (do B, I, C thẳng hàng)
Tương tự, ta chứng minh được DI' // BC. Do đó A, I', D thẳng hàng theo tiên đề Euclide.
Lời giải:
Để 2 vecto cùng phương thì:
$\frac{m^2+m+2}{m}=\frac{4}{2}=2$ ($m\neq 0$)
$\Leftrightarrow m^2+m+2=2m$
$\Leftrightarrow m^2-m+2=0$
$\Leftrightarrow (m-0,5)^2=\frac{-7}{4}<0$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn yêu cầu.
a.
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-5;-1\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)
Do ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}3-x=-5\\-2-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
\(\Rightarrow D\left(8;-1\right)\)
Gọi O là tâm hình bình hành \(\Rightarrow\) O là trung điểm AC
Theo công thúc trung điểm:
\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=\dfrac{7}{2}\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(\dfrac{7}{2};\dfrac{1}{2}\right)\)
b.
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)
\(\Rightarrow G\left(2;1\right)\)
I đối xứng B qua G \(\Rightarrow G\) là trung điểm IB
\(\Rightarrow\left\{{}\begin{matrix}x_I=2x_G-x_B=5\\y_I=2y_G-y_B=0\end{matrix}\right.\) \(\Rightarrow I\left(5;0\right)\)
\(\left\{{}\begin{matrix}\dfrac{x_A+x_D+x_C}{3}=5=x_I\\\dfrac{y_A+y_D+y_C}{3}=0=y_I\end{matrix}\right.\) \(\Rightarrow I\) là trọng tâm ADC
c.
Ta có: \(S_{ABC}=\dfrac{1}{2}AB.d\left(C;AB\right)\)
\(S_{ABM}=\dfrac{1}{2}AB.d\left(M;AB\right)\)
\(S_{ABC}=3S_{ABM}\Rightarrow d\left(C;AB\right)=3d\left(M;AB\right)\)
\(\Rightarrow BM=\dfrac{1}{3}BC\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{BC}\\\overrightarrow{BM}=-\dfrac{1}{3}\overrightarrow{BC}\end{matrix}\right.\)
Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{BM}=\left(x+1;y-2\right)\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1;y-2\right)=\dfrac{1}{3}\left(4;-4\right)\\\left(x+1;y-2\right)=-\dfrac{1}{3}\left(4;-4\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\\\left(x;y\right)=\left(-\dfrac{7}{3};\dfrac{10}{3}\right)\end{matrix}\right.\)
Do D nằm trên trục hoành nên tọa độ có dạng \(D\left(x;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BC}=\left(2;-2\right)\\\overrightarrow{AD}=\left(x-5;-5\right)\end{matrix}\right.\)
Do BC, AD là 2 đáy hình thang \(\Rightarrow BC||AD\)
\(\Rightarrow\overrightarrow{AD}\) cùng phương \(\overrightarrow{BC}\)
\(\Rightarrow\dfrac{x-5}{2}=\dfrac{-5}{-2}\)
\(\Rightarrow x-5=5\Rightarrow x=10\)
\(\Rightarrow D\left(10;0\right)\)
a.
\(A\left(2;-3\right)\)
Do I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=0\\y_C=2y_I-y_A=5\end{matrix}\right.\)
\(\Rightarrow C\left(0;5\right)\)
\(\overrightarrow{AK}=\left(-3;5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;3\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x+1\right)+3\left(y-2\right)=0\Leftrightarrow5x+3y-1=0\)
Do điểm D có hoành độ gấp đôi tung độ, gọi tọa độ D có dạng \(D\left(2d;d\right)\)
I là tâm hình bình hành nên I là trung điểm BD
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_D=2-2d\\y_B=2y_I-y_D=2-d\end{matrix}\right.\)
B thuộc đường thẳng AB nên thay tọa độ B vào pt AB ta được:
\(5\left(2-2d\right)+3\left(2-d\right)-1=0\)
\(\Rightarrow d=\dfrac{15}{13}\Rightarrow D\left(\dfrac{30}{13};\dfrac{15}{13}\right)\)
\(\Rightarrow B\left(-\dfrac{4}{13};\dfrac{11}{13}\right)\)
b.
Gọi A' là điểm đối xứng A qua Oy \(\Rightarrow A'\left(-2;-3\right)\)
\(\Rightarrow\overrightarrow{A'D}=\left(\dfrac{56}{13};\dfrac{54}{13}\right)=\dfrac{2}{13}\left(28;27\right)\)
Đường thẳng A'D nhận \(\left(27;-28\right)\) là 1 vtpt
Phương trình A'D:
\(27\left(x+2\right)-28\left(y+3\right)=0\Leftrightarrow27x-28y-30=0\)
Gọi M' là giao điểm của A'D với Oy
\(\Rightarrow M'\left(0;-\dfrac{15}{14}\right)\)
Do A' đối xứng A qua Oy nên: \(MA=MA'\)
\(\Rightarrow MA+MD=MA'+MD\ge A'D\)
Dấu "=" xảy ra khi và chỉ khi M, A', D thẳng hàng
Hay M là giao điểm của A'D và Oy
\(\Rightarrow M\) trùng M'
\(\Rightarrow M\left(0;-\dfrac{15}{14}\right)\)
Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?
Bài làm:
Số HS K10 chỉ tham gia 1 CLB - CLB Toán:
180 - 50 = 130 (HS)
Số HS K10 chỉ tham gia 1 CLB - CLB Ngoại ngữ:
120 - 50 = 70 (HS)
K10 trường đó có số HS là:
130 + 70 + 50 + 100 = 350 (HS)
Đ.số: 350 HS