Cho tam giác nhọn ABC có phân giác AD, đường cao BH và trung tuyến CE đồng qui tại O. CMR: \(\dfrac{sinB}{cosA}=tanC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Khi $m=2$ thì $(d_1)$ có pt $y=2x+2^2-1=2x+3$ nên $(d_1)\equiv (d_2)$ nên tọa độ giao điểm $A$ là mọi điểm nằm trên $y=2x+3$
b. $B\in Oy$ nên $x_B=0$
$B\in (d_2)$ nên $y_B=2x_B+3=2.0+3=3$
Vậy $B$ có tọa độ $(0,3)$
$C\in Ox$ nên $y_C=0$
$C\in (d_2)$ nên $y_C=2x_C+3\Rightarrow x_C=(y_C-3):2=\frac{-3}{2}$
Vậy $C(\frac{-3}{2},0)$
$S_{OCB}=\frac{OB.OC}{2}=\frac{|y_B|.|x_C|}{2}=3.\frac{3}{2}:2=\frac{9}{4}$ (đơn vị diện tích)
c.
PT hoành độ giao điểm của $(d_1), (d_2)$:
$mx+m^2-1=2x+3$
$\Leftrightarrow m(x-2)=4-m^2(*)$
Để $(d_1)$ và $(d_2)$ cắt nhau ở trục tung thì $x=0$ là nghiệm của pt $(*)$
$\Leftrightarrow m.(0-2)=4-m^2$
$\Leftrightarrow -2m=4-m^2$
$\Leftrightarrow m^2-2m-4=0$
$\Leftrightarrow m=1\pm \sqrt{5}$
Lời giải:
Gọi độ dài 2 cạnh góc vuông của tam giác là $5a$ và $6a$ (với $a>0$)
Áp dụng định lý Pitago:
$(5a)^2+(6a)^2=122^2$
$\Leftrightarrow 61a^2=14884$
$\Rightarrow a^2=244$
Độ dài hình chiếu gọi là $d$. Theo hệ thức lượng trong tam giác:
$\frac{1}{d^2}=\frac{1}{(5a)^2}+\frac{1}{(6a)^2}$
$=\frac{61}{900a^2}=\frac{61}{900.244}=\frac{1}{3600}$
$\Rightarrow d^2=3600=60^2$
$\Rightarrow d=60$ (cm)
\(5x^4+10x^2+2y^6+4y^3-6=0\)
\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.
\(x^2+xy-2012x-2013y-2014=0\)
\(\Leftrightarrow x\left(x+y\right)-2013x-2013y+x-2013-1=0\)
\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+\left(x-2013\right)-1=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2013\right)+\left(x-2013\right)-1=0\)
\(\Leftrightarrow\left(x-2013\right)\left(x+y+1\right)=1\)
\(\Leftrightarrow\left(x-2013\right);\left(x+y+1\right)\in\left\{-1;1\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(2012;-2014\right);\left(2014;-2014\right)\right\}\left(x;y\inℤ\right)\)