K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

Đề thi đánh giá năng lực

NM
2 tháng 6 2021

Xét 

\(y'=4x^3-4\left(m-1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=m-1\end{cases}}\)
TH1: 

\(m-1\le0\) thì hàm số đồng biến trên R

TH2: \(m-1>0\Rightarrow\orbr{\begin{cases}x=\sqrt{m-1}\\x=-\sqrt{m-1}\end{cases}}\)

Khi đó khoảng đồng biến của hàm số là \(\left(-\infty,-\sqrt{m-1}\right)\text{ và }\left(0,\sqrt{m-1}\right)\)

Muốn hàm số đồng biến trên (1,3) thì \(\left(1,3\right)\subset\left(0,\sqrt{m-1}\right)\Leftrightarrow3\le\sqrt{m-1}\Leftrightarrow m\ge10\)

Vậy \(\orbr{\begin{cases}m\le1\\m\ge10\end{cases}}\)

1 tháng 6 2021

Giúp với mọi người

4 tháng 6 2021

2 cực trị ??

12 tháng 10 2021

n!=1.2.3...nQuy ước: 0!=1

n!=(n−1)!n

n!p!=(p+1)(p+2)....n  (với n>p)

n!(n−p)!=(n−p+1)(n−p+2)....n  (với n>p)

2. Hoán vị (không lặp)

Một tập hợp gồm n phần tử (n≥1). Mỗi cách sắp xếp n phần tử này theo một thứ tự nào đó được gọi là một hoán vị của n phần tử.

Số hoán vị của n phần tử là Pn=n!

3. Hoán vị lặp

Cho k phần tử khác nhau a1;a2;...;ak . Mỗi cách sắp xếp n phần tử trong đó gồm n1 phần tử a1; n2 phần tử a2;…; nk phần tử ak (n1+n2+...+nk=n) theo một thứ tự nào đó được gọi là một hoán vị lặp cấp n và kiểu (n1;n2;...;nk) của k phần tử

Số các hoán vị lặp cấp n kiểu (n1;n2;;;;nk) của k phần tử là:

 

Pn(n1;n2;...;nk)=n!n1!n2!...nk!

 

HƯỚNG DẪN GIẢI

31 tháng 5 2021

??????

bạn thiếu vé báo cáo hả ?

31 tháng 5 2021

????????????

nhắn cái gì mà nhấnnnnnnnnnnnnnnnnnnn

30 tháng 5 2021

Trả lời :

K rõ câu hỏi

~HT~