K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 10 2021

\(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{5}{19}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{19}.15=\frac{75}{19}\\y=\frac{5}{19}.10=\frac{50}{19}\\z=\frac{5}{19}.6=\frac{30}{19}\end{cases}}\).

DD
8 tháng 10 2021

\(\left|x+2\right|+\left|x+6\right|=3x\)

Có \(VT\ge0\Rightarrow VP\ge0\Leftrightarrow x\ge0\)do đó phương trình ban đầu tương đương với: 

\(x+2+x+6=3x\)

\(\Leftrightarrow x=8\)(thỏa mãn) 

 Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.Bài 5: (4 điểm) Cho tam giác ABC cân tại A có A = 200, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia...
Đọc tiếp

 

30 đề thi HSG Toán 7 có đáp án

Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.

Bài 5: (4 điểm) Cho tam giác ABC cân tại A có A = 200, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giá của góc ABD cắt AC tại M. Chứng minh:

a) Tia AD là phân giác của góc BAC

b) AM = BC

Bài 6: (2 điểm): Tìm x , y ∈ N biết: 25 - y 2 = 8( x - 2009)2

Đáp án Đề thi học sinh giỏi lớp 7 môn Toán số 1

Bài 1.

30 đề thi HSG Toán 7 có đáp án

Bài 2

30 đề thi HSG Toán 7 có đáp án

Bài 3

30 đề thi HSG Toán 7 có đáp án

Bài 4

30 đề thi HSG Toán 7 có đáp án

Bài 5

30 đề thi HSG Toán 7 có đáp án30 đề thi HSG Toán 7 có đáp án

Bài 6

Đề thi học sinh giỏi lớp 7 môn Toán có đáp án

Đề thi học sinh giỏi lớp 7 môn Toán - Đề số 2

Câu 3: Tìm tỉ lệ 3 cạnh của một tam giác, biết rằng cộng lần lượt độ dài hai đường cao của tam giác đó thì tỷ lệ các kết quả là 5: 7: 8.

Câu 4: Cho góc xoy, trên hai cạnh ox và oy lần lượt lấy các điểm A và B để cho AB có độ dài nhỏ nhất

GIAI DUOC 100 DIEM 

0
 Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ...
Đọc tiếp

 

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

B. TOÁN NÂNG CAO LỚP 7 PHẦN HÌNH HỌC

Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈  AE). Chứng minh rằng Δ MHK vuông cân.

Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.

Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.

Bài toán 16. Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:

a. ΔABC = ΔMDE

b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.

Bài toán 17. Cho ABC vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = BA; CN = CA. Tính góc MAN

Bài toán 18. Cho đoạn thẳng MN = 4cm, điểm O nằm giữa M và N. Trên cùng một nửa mặt phẳng bờ MN vẽ các tam giác cân đỉnh O là OMA và OMB sao cho góc ở đỉnh O bằng 450. Tìm vị trí của O để AB min. Tính độ dài nhỏ nhất đó

THANG 100 DIEM 

0
DD
8 tháng 10 2021

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...+1+\frac{2}{2007}+1+\frac{1}{2008}\)

\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\)

Suy ra \(\frac{A}{B}=\frac{1}{2009}\).

29 tháng 11 2021

a=1953,75

8 tháng 10 2021

b) \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{99}\left(1+2+...+99\right)\)

Ta gọi \(B=U_1+U_2+...+U_{99}\)

Số tổng quát \(U_n=\frac{1}{n}\left(1+2+3+...+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\) Với n = 1, 2, 3, ..., 99

Như vậy \(B=\frac{1+1}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{99+1}{2}\) \(\Leftrightarrow\)   \(2.B=99+\left(1+2+3+...+99\right)\)

\(\Leftrightarrow2.B=99+\frac{99.\left(99+1\right)}{2}=51\times99=5049\) Vậy  \(B=\frac{5049}{2}\)

c)   Tính C

26 tháng 11 2021

Với  \(1\le n\le99\) Gọi  \(U_n=\frac{1}{n}\left(0+1+2+...+n\right)=\frac{1}{n}[1+2+...+\left(n-1\right)]+1\)

\(\Leftrightarrow U_n=\frac{1}{n}.\frac{[1+\left(n-1\right)]\left(n-1\right)}{2}+1=\frac{n+1}{2}\)

Vậy \(B=U_1+U_2+U_3+...+U_{98}+U_{99}=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{99}{2}+\frac{100}{2}.\)\(\Leftrightarrow B=\frac{1}{2}\left(2+3+4+...+99+100\right)\)

\(\Leftrightarrow B=\frac{1}{2}.\frac{\left(2+100\right).99}{2}=\frac{5049}{2}\)