cho 3 số nguyên a b c thoả mãn a-b+2024,b-c+2024,c-a+2024 lần lượt là ba số nguyên tiên tiếp tăng dần, tính P=(a-b)(b-c)(c-a).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+2}-2^x=96\)
\(2^x.\left(2^2-1\right)=96\)
\(2^x.3=96\)
\(2^x=96:3\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
$9 . 2^{3x-1} = 36$
$\Rightarrow 2^{3x-1} = 36 : 9$
$\Rightarrow 2^{3x-1} = 4$
$\Rightarrow 2^{3x-1} = 2^{2}$
$\Rightarrow 3x - 1 = 2$
$ 3x = 2 + 1$
$ 3x = 3$
$ x = 3 : 3$
$ x = 1$
Vậy `x = 1`
\(3^{x-4}-17=2^6\)
\(\Rightarrow3^{x-4}-17=64\)
\(\Rightarrow3^{x-4}=64+17\)
\(\Rightarrow3^{x-4}=81\)
\(\Rightarrow3^{x-4}=3^4\)
$\Rightarrow x - 4 = 4$
$ x = 4 + 4$
$ x = 8$
Vậy `x = 8`
`105 +(3+x)^2=121`
`=> (3+x)^2=121-105`
`=> (3+x)^2=16`
`=> (3+x)^2=4^2`
`=>3+x=4`
`=>x=4-3`
`=>x=1`
Vậy: `x=1`
\(105+\left(3+x\right)^2=121\)
\(\Rightarrow\left(3+x\right)^2=121-105\)
\(\Rightarrow\left(3+x\right)^2=16\)
\(\Rightarrow\left(3+x\right)^2=\left(\pm4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}3+x=4\\3+x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=4-3\\x=-4-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{1;-7\right\}\)
\(10\) chia hết cho 5 nên \(10^{2021}\) chia hết cho 5
Mà 8 ko chia hết cho 5
Nên \(10^{2021}+8\) không chia hết cho 5
D đúng
Đặt `A= 1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100)`
`3A= 3. (1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100))`
`3A= 1 + 1/3 + 1/(3^2) + ... + 1/(3^98) + 1/(3^99)`
`3A - A = (1 + 1/3 + 1/(3^2)+... + 1/(3^98) + 1/(3^99)) - (1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100))`
`2A = 1 - 1/(3^100)`
`A = (1 - 1/(3^100))/2`
Vậy: `1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100) = (1-1/(3^100))/2`
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{3^{98}}\) + \(\dfrac{1}{3^{99}}\)
3A - A = (1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ...+\(\dfrac{1}{3^{98}}\) + \(\dfrac{1}{3^{99}}\)) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+..+\(\dfrac{1}{3^{99}}\)+\(\dfrac{1}{3^{100}}\))
A.(3 - 1) = 1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+..+\(\dfrac{1}{3^{98}}\)+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}\) - ...- \(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3^{100}}\)
A x 2 = (1 - \(\dfrac{1}{3^{100}}\)) + (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3^{98}}\) - \(\dfrac{1}{3^{98}}\)) + (\(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3^{99}}\))
A x 2 = 1 - \(\dfrac{1}{3^{100}}\) + 0 + 0 + ..+ 0
A x 2 = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\)