K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A={a+b=5; a,b\(\in\)N}

=>A={(1;4);(0;5);(2;3);(3;2);(4;1);(5;0}}

 

Thể tích nước trong thùng ban đầu là:

\(V_1=x\cdot a\cdot b\left(dm^3\right)\)

Diện tích đáy trong thùng sau khi nghiêng là:

\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)

Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)

Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)

=>x=3

 

7 tháng 8

a) \(\left|x-5\right|-\left|x-7\right|\le\left|x-5-x+7\right|=2\)

Dấu "=" xảy ra: 

`(x-5)(x-7)<=0<=>5<=x<=7` 

b) \(\left|3x-5\right|-\left|7-3x\right|=\left|3x-5\right|-\left|3x-7\right|\le\left|3x-5-3x+7\right|=2\)

Dấu "=" xảy ra: 

`(3x-5)(3x-7)<=0<=>5/3<=x<=7/3` 

c) \(\left|1-x\right|-\left|2-x\right|\le\left|1-x-2+x\right|=1\)

Dấu "=" xảy ra: 

`(1-x)(2-x)<=0<=>(x-1)(x-2)<=0<=>1<=x<=2`

7 tháng 8

a;A = 32 + 64 + 28 + \(x\) ⋮ 2 ⇔ \(x\) ⋮ 2 

⇒ \(x\) = 2k (k \(\in\) N)

b; A = 32 + 64 + 28 + \(x\) không chia hết cho 2 

⇔ \(x\) không chia hết cho 2 

\(x=\)2k + 1 

 

NV
7 tháng 8

Đổi 5 yến = 50 kg

Phần cám và vỏ trấu nặng là:

\(50-41=9\left(kg\right)\)

Đáp số: 9 kg

a: \(x\in B\left(9\right)\)

=>\(x\in\left\{0;9;18;27;36;45;54;63;72;...\right\}\)

mà 25<=x<=64

nên \(x\in\left\{27;36;45;54;63\right\}\)

b: \(x\inƯ\left(18\right)\)

=>\(x\in\left\{1;2;3;6;9;18\right\}\)

mà x>3

nên \(x\in\left\{6;9;18\right\}\)

c: \(x⋮8\)

=>\(x\in\left\{0;8;16;24;32;40;...\right\}\)

mà x<35

nên \(x\in\left\{0;8;16;24;32\right\}\)

d: \(60⋮x\)

=>\(x\in\left\{1;2;3;4;5;6;10;12;15;20;30;60\right\}\)

mà x>5

nên \(x\in\left\{6;10;12;15;20;30;60\right\}\)

7 tháng 8

a; 35 + 49 + 210

Vì 35 \(⋮\) 7

    49 \(⋮\) 7

  210 ⋮ 7

Vậy A = 35 + 49 + 210 ⋮ 7 (tính chất chia hết của một tổng)

 

7 tháng 8

b; B= 560 - 18 + 3 = 560 - 14 -  (4 - 3)

    560 \(⋮\) 7 

  -  14 ⋮ 7 

- (4 - 3) = -1  không chia hết 7

⇒ B = 560 - 18 + 3 không chia hết cho 7 

NV
7 tháng 8

Gọi số lớn là x, số nhỏ là y 

Do hiệu 2 số là 272 nên ta có pt:

\(x-y=272\) (1)

Do số lớn chia số nhỏ được 4 dư 56 nên:

\(x=4y+56\Leftrightarrow x-4y=56\) (2)

Từ (1) và (2) ta được hệ:

\(\left\{{}\begin{matrix}x-y=272\\x-4y=56\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=344\\y=72\end{matrix}\right.\)

7 tháng 8

Đặt \(x\) là số nhỏ

\(\Rightarrow\) Số lớn \(=4x+56\)

Khi đó, ta có: \(4x+56-x=272\) và ta tìm được \(x=72\)

Nên số lớn là \(344\)

Vậy hai số đó là \(72\) và \(344\)

 

On là phân giác của góc xOz

=>\(\widehat{xOn}=\dfrac{\widehat{xOz}}{2}=\dfrac{180^0}{2}=90^0\)

NV
7 tháng 8

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow\left(x+1\right)^3+\left(x+1\right)=\left(3x+1+1\right)\sqrt{3x+1}\)

Đặt \(\left\{{}\begin{matrix}x+1=a\\\sqrt{3x+1}=b\ge0\end{matrix}\right.\)

Pt trở thành:

\(a^3+a=\left(b^2+1\right)b\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(a^2+ab+b^2+1=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+1>0\))

\(\Leftrightarrow\sqrt{3x+1}=x+1\)

\(\Leftrightarrow3x+1=x^2+2x+1\)

\(\Rightarrow x=\left\{0;1\right\}\)