tìm giá trị lớn nhất của biểu thức C= x-4/x^3-64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2x + 5 )( 2x - 5 ) - ( 4x5 - 2x4 ) : ( -x3 ) = 15
<=> 4x2 - 25 - [ ( 4x5 : ( -x3 ) - ( 2x4 : ( -x3 ) ] = 15
<=> 4x2 - 25 - ( -4x2 + 2x ) = 15
<=> 4x2 - 25 + 4x2 - 2x - 15 = 0
<=> 8x2 - 2x - 40 = 0
Δ = b2 - 4ac = (-2)2 - 4.8.(-40) = 1284
Δ > 0 nên phương trình có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2+\sqrt{1284}}{16}=\frac{1+\sqrt{321}}{8}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2-\sqrt{1284}}{16}=\frac{1-\sqrt{321}}{8}\end{cases}}\)
Vậy ...
\(x\left(x-1\right)\left(x+3\right)-x^2\left(x+3\right)=-4\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)-x^2\right]=-4\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-x^2\right)=-4\)
\(\Leftrightarrow-x\left(x+3\right)=-4\)
\(\Leftrightarrow-x^2-3x=-4\)
\(\Leftrightarrow x^2+3x-4=0\)
\(\Leftrightarrow x^2-x+4x-4=0\)
\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
vậy........
x( x - 1 )( x + 3 ) - x2( x + 3 ) = -4
⇔ ( x + 3 )[ x( x - 1 ) - x2 ] + 4 = 0
⇔ ( x + 3 )( x2 - x - x2 ) + 4 = 0
⇔ ( x + 3 ).(-x) + 4 = 0
⇔ -x2 - 3x + 4 = 0
⇔ -( x2 + 3x - 4 ) = 0
⇔ -( x2 - x + 4x - 4 ) = 0
⇔ -[ x( x - 1 ) + 4( x - 1 ) ] = 0
⇔ -( x - 1 )( x + 4 ) = 0
⇔ x - 1 = 0 hoặc x + 4 = 0
⇔ x = 1 hoặc x = -4
a) x( x + y ) - 7x - 7y
= x( x + y ) - 7( x + y )
= ( x + y )( x - 7 )
b) 16x - 5x2 - 3
= -5x2 + 15x + x - 3
= -5x( x - 3 ) + ( x - 3 )
= ( x - 3 )( 1 - 5x )
c) x4 - y4 - x2 + y2
= ( x2 - y2 )( x2 + y2 ) - ( x - y )( x + y )
= ( x - y )( x + y )( x2 + y2 ) - ( x - y )( x + y )
= ( x - y )( x + y )( x2 + y2 - 1 )
1. a) 2x2 - 8x
= 2x(x - 4)
b) x2 - xy + x - y
= x(x - y) + (x - y)
= (x + 1)(x - y)
2. a) Ta có M = x2 + 5y2 + 4xy + 4y + 11
= (x2 + 4xy + 4y2) + (y2 + 4y + 4) + 7
= (x + 2y)2 + (y + 2)2 + 7 \(\ge7\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2y\\y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-2\end{cases}}\)
Vậy Min M = 7 <=> x = 4 ; y = -2