K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

a) Điều kiện: \(x\ne\pm1\)

 \(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)

\(B=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}-\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{-4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{x^2-x-x+1-x^2-x-x-1+4}{\left(x-1\right).\left(x+1\right)}\)

\(B=\frac{-4x+4}{\left(x-1\right).\left(x+1\right)}=\frac{-4.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}=\frac{-4}{x+1}\)

b) \(x^2-x=0\Leftrightarrow x.\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Khi  \(x=0\Leftrightarrow\frac{-4}{0-1}=\frac{-4}{-1}=4\)

Khi \(x=1\Leftrightarrow\frac{-4}{1-1}=0\)

c) \(\frac{-4}{x+1}=-3\Leftrightarrow-3.\left(x+1\right)=-4\Leftrightarrow x+1=\frac{4}{3}\Leftrightarrow x=\frac{1}{3}\)

22 tháng 12 2020

\(P=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

a) Điều kiện: \(x\ne3;x\ne-3\)

b)  \(P=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)

\(P=\frac{3.\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{x+3}{\left(x-3\right).\left(x+3\right)}-\frac{-18}{\left(x-3\right).\left(x+3\right)}\)

\(P=\frac{3x-9+x+3+18}{\left(x+3\right).\left(x-3\right)}=\frac{4x+12}{\left(x-3\right).\left(x+3\right)}=\frac{4.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}=\frac{4}{x-3}\)

c)  \(\frac{4}{x-3}=4\Leftrightarrow4=\left(x-3\right).4\Leftrightarrow4x-12=4\Leftrightarrow4x=16\Leftrightarrow x=4\)