Cho tam giác ABC vuông tại A (AB<AC), kẻ đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Đường thẳng qua A vuông góc với DE cắt BC tại O. a) Chứng minh: AH^2=AE.AC; AH^2=AD.AB b) Chứng minh tam giác AED đồng dạng với tam giác ABC. c) Kẻ đường thẳng d vuông góc với OA tại A, cắt đường thẳng BC tại K. Chứng minh AB là tia phân giác của OAK; BK/BH=CK/CH và chứng minh O là trung điểm của BC d)Chứng minh: AH^2=HB.HC và AD.BD+AE.EC=AH^2 e) Gọi I, J lần lượt là giao điểm HD, HE với đường thẳng d. Chứng minh BI//CJ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p^n+8=k^3\left(k\inℕ,k\ge3\right)\)
\(\Leftrightarrow k^3-8=p^n\)
\(\Leftrightarrow\left(k-2\right)\left(k^2+2k+4\right)=p^n\)
\(\Leftrightarrow k-2=p^i\left(i\inℕ,i\le n\right)\)
\(\Leftrightarrow k=p^i+2\)
Ta có \(p^n+8=k^3\)
\(\Leftrightarrow p^n+8=\left(p^i+2\right)^3\)
\(\Leftrightarrow p^n=p^{3i}+6p^{2i}+12p^i\) (*)
Đặt \(p^j=\dfrac{p^n}{p^i}\left(j\inℕ,j\le n\right)\), khi đó (*) thành
\(p^j=p^{2i}+6p^{2i}+12\) (**)
Xét \(i=0\Leftrightarrow p^j=19\Leftrightarrow\left(p,j\right)=\left(19,1\right)\) \(\Rightarrow n=1\)
Ta tìm được một bộ \(\left(p,n\right)=\left(17,1\right)\)
Nếu \(j=0\) thì vô lí. Xét \(i,j\ge1\) . Khi đó ta có \(12⋮p\) \(\Rightarrow p\in\left\{2,3\right\}\)
Với \(p=2\), ta có \(2^n+8=k^3\) \(\Rightarrow k⋮2\Rightarrow k=2l\left(l\inℕ\right)\)
\(\Rightarrow2^n+8=8l^3\Leftrightarrow2^{n-3}+1=l^3\) \(\left(n\ge3\right)\)
\(\Leftrightarrow\left(l-1\right)\left(l^2+l+1\right)=2^{n-3}\)
\(\Leftrightarrow l-1=2^m\left(m\le n-3\right)\)
\(\Leftrightarrow l=2^m+1\)
Do đó \(2^{n-3}+1=\left(2^m+1\right)^3\)
\(\Leftrightarrow2^{n-3}=2^{3m}+3.2^{2m}+3.2^m\)
\(\Leftrightarrow2^{n-3-m}=2^{2m}+3.2^m+3\)
\(\Rightarrow3⋮2^{n-3-m}\) \(\Leftrightarrow n-3-m=0\) \(\Leftrightarrow m=n-3\)
\(\Leftrightarrow l^2+l+1=1\) \(\Leftrightarrow l=0\) \(\Leftrightarrow k=0\), vô lí.
Với \(p=3\), ta có \(3^n+8=k^3\) \(\Rightarrow k\) chia 3 dư 2 \(\Rightarrow k=3q+2\left(q\inℕ^∗\right)\)
\(\Rightarrow3^n+8=\left(3q+2\right)^3\)
\(\Leftrightarrow3^n=27q^3+54q^2+36q\)
\(\Leftrightarrow3^{n-2}=q\left(3q^2+6q+4\right)\) \(\left(n\ge2\right)\)
Dễ thấy nếu \(n=2\) thì vô lí. Xét \(n\ge3\). Khi đó vì \(3q^2+6q+4⋮̸3\) nên \(3q^2+6q+4=1\), vô lí.
Vậy \(\left(p,n\right)=\left(19,1\right)\) là cặp số duy nhất thỏa mãn ycbt.
Câu e:
$\widehat {A_1}+\widehat{A_2}=90^{\circ}$
$\widehat{A_2}=\widehat{C_1}$
$\Rightarrow \widehat{A_1}+\widehat{C_1}=90^{\circ}$
Mặt khác $\widehat{C_1}+\widehat{CAH} = 90^{\circ}$
Suy ra $A_1=\widehat{CAH}$ (1)
Chứng minh được $\Delta JAE = \Delta HAE$ (cgv-gn)
$\Rightarrow AJ=AH$ (2)
Từ (1); (2) và chung cạnh $AC$ ta suy ra $\Delta AJC=\Delta AHC$ (c.g.c).
Suy ra $\widehat {J}=90^{\circ}$ hay $CJ\bot IJ$.
Chứng minh tương tự $BI \bot IJ$.
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
Lời giải:
ĐKXĐ: $x\neq \pm 2; x\neq 0$
\(A=\left[\frac{3x^2+4}{x(x+2)}+\frac{x(2x-4)}{x(x+2)}\right].\frac{2x}{(x-2)(x+2)}\\ =\frac{3x^2+4+2x^2-4x}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{5x^2-4x+4}{x(x+2)}.\frac{2x}{(x-2)(x+2)}\\ =\frac{2(5x^2-4x+4)}{(x-2)(x+2)^2}\)
Biểu thức sau khi thu gọn xấu quá bạn. Bạn có viết sai đề không nhỉ?
Ta có: DE//AC (cùng vuông góc với AB)
Áp dụng định lý Ta-lét ta có:
\(\dfrac{BD}{AD}=\dfrac{BE}{CE}\Rightarrow\dfrac{BD}{AD}=\dfrac{BE}{BC-BE}\Rightarrow\dfrac{6}{x}=\dfrac{3x}{13,5-3x}\)
\(\Leftrightarrow6\left(13,5-3x\right)=x\cdot3x\)
\(\Leftrightarrow81-18x=3x^2\)
\(\Leftrightarrow27-6x=x^2\)
\(\Leftrightarrow x^2+6x-27=0\)
\(\Leftrightarrow x^2-3x+9x-27=0\)
\(\Leftrightarrow x\left(x-3\right)+9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(ktm\right)\end{matrix}\right.\)
Vậy: `x=3`
Cx k khó lắm vẽ hình chứ bn tự làm đc nhỉ:)) mình làm câu a vs B th nha mấy câu kia vẽ rắc rối lắm lười vẽ=))
Bài Làm
a) Áp dụng quan hệ giữa cạnh và đường cao trong tam giác vuông vào tam giác AHC vuông tại H ( H vuông góc BC ) :
\(\Rightarrow\) AH2= AE.AC ( đpcm ) (1)
Áp dụng quan hệ giữa cạnh và đường cao trong tam giác vuông vào tam giác AHB vuông tại H ( H vuông góc BC ) :
\(\Rightarrow\)AH2=AD.AB ( đpcm ) ( 2 )
b) Từ (1) và (2) ta có : AE.AC = AD.AB
\(\Rightarrow\)\(\dfrac{AE}{AD}\)=\(\dfrac{AC}{AB}\)
Xét tam giác ADE và tam giác ABC ta có :
góc A chung
\(\dfrac{AE}{AD}\)=\(\dfrac{AC}{AB}\) (cmt)
\(\Rightarrow\)tam giác ADE đồng dạng với tam giác ABC ( đpcm )