Giải phương trình
\(9x^2-31x+28=\left(2x-3\right)\sqrt{6x^2-18x+12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TRẢ LỜI:
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-45^o=75^o\)
Theo định lí hàm \(sin\)trong tam giác:
\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{bsinA}{sinB}=\frac{4.sin60^o}{sin45^o}=2\sqrt{6}\\c=\frac{bsinC}{sinB}=\frac{4sin60^o}{sin75^o}=-2\sqrt{6}+6\sqrt{2}\end{cases}}\)
\(A=a+\frac{2}{a^2}=\frac{1}{2}a+\frac{1}{2}a+\frac{2}{a^2}\ge3\sqrt[3]{\frac{1}{2}a.\frac{1}{2}a.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)
Dấu \(=\)khi \(\frac{1}{2}a=\frac{2}{a^2}\Leftrightarrow a=\sqrt[3]{4}\).
\(\hept{\begin{cases}x+3y+2z=-1\left(1\right)\\4y+3x=1,5\left(2\right)\\2z=3\left(3\right)\end{cases}}\)
\(\left(3\right)\Rightarrow z=\frac{3}{2}\)Thay vào pt (1) ta được:
hệ phương trình có dạng \(\hept{\begin{cases}x+3y+3=-1\\4y+3x=1,5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3y=-4\\3x+4y=1,5\end{cases}\Leftrightarrow\hept{\begin{cases}3x+9y=-12\\3x+4y=1,5\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5y=-\frac{27}{2}\\x+3y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{27}{10}\\x=-4-3.\left(-\frac{27}{10}\right)=\frac{41}{10}\end{cases}}}\)
Vậy hệ pt có một nghiệm ( x ; y ; z ) = ( \(\frac{41}{10};-\frac{27}{10};\frac{3}{2}\))
\(\cos\left(\frac{\pi}{6}\left(4x+\sqrt{10+x^2}\right)\right)=-\frac{\sqrt{3}}{2}\)
\(\cos\left(\frac{\pi}{6}\left(4x+\sqrt{10+x^2}\right)\right)=\cos\left(\frac{5\pi}{6}\right)\)
\(\frac{\pi}{6}\left(4x+\sqrt{10+x^2}\right)=\frac{5\pi}{6}\)
\(4x+\sqrt{10+x^2}=5\)
\(\sqrt{10+x^2}=5-4x\)
\(10+x^2=25-40x+16x^2\)
\(15-40x+15x^2=0\)
\(\sqrt{\Delta}=10\sqrt{7}\)
\(\orbr{\begin{cases}x_1=\frac{40+10\sqrt{7}}{30}=\frac{4+\sqrt{7}}{3}\left(ktm\right)\\x_2=\frac{40-10\sqrt{7}}{30}=\frac{4-\sqrt{7}}{3}\left(tm\right)\end{cases}}\)
vậy pt có n0 duy nhất là \(\frac{4-\sqrt{7}}{3}\)