cho tam giác abc cân tại a gọi h là trung điểm của ac chứng minh
atam giác abh = tam giác ach và ah là phân giác của góc bac
b) gọi m là trung điểm của ab n là trung điểm của ac chứng minh hm=hn
c chứng minh nm//bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, bạn bổ sung đề trước đi ạ. Đây mới là phần sau của đề thôi
a)Xét 2 tam giác ABH và ACH có:
AB=AC(do tam giác ABC cân tại A)
Góc ABC bằng góc ACB (do tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=>Tam giác ABH = tam giác ACH(cạnh - góc - cạnh)
b)Xét 2 tam giác HBA và HCM có:
Góc AHB bằng góc CHM(2 góc đối đỉnh)
HA=HM(giả thiết)
BH=HC(H là trung điểm BC)
=>Tam giác HBA bằng tam giác HCM(cạnh-góc-cạnh)
=>Góc ABH=góc MCH(2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong của đường thẳng AB và MC nên MC//AB
c)Xét tam giác ACM có:
CH là đường trung tuyến(H là trung điểm AM)
AF là đường trung tuyến(F là trung điểm MC)
Mà AF cắt CH tại G(do AF cắt BC tại G;H thuộc BC;G thuộc CH)
=>G là trọng tâm của tam giác ACM
Ta có:
ME cũng là 1 đường trung tuyến của tam giác ACM (E là trung điểm AC)
=>G thuộc ME ( tính chất 3 đường trung tuyến)
=>M,G,E thẳng hàng
`#3107.101107`
`a)`
Vì `\triangle ABC` cân tại A
`\Rightarrow`\(\text{AB = AC; }\widehat{\text{ABC}}=\widehat{\text{ACB}}\)
Xét `\triangle ABH` và `\triangle ACH`:
`\text{AB = AC}`
\(\widehat{\text{ABC}}=\widehat{\text{ACB}}\)
\(\text{HB = HC (H là trung điểm BC)}\)
\(\Rightarrow\) `\triangle ABH = \triangle ACH (c - g - c)`
`b)`
Xét `\triangle AHB` và `\triangle MHC`:
\(\text{AH = HM}\)
\(\widehat{\text{AHB}}=\widehat{\text{MHC}}\left(\text{đối đỉnh}\right)\)
\(\text{HB = HC }\)
`\Rightarrow \triangle AHB = \triangle MHC (c-g-c)`
\(\Rightarrow\widehat{\text{ABH}}=\widehat{\text{MCH}}\left(\text{2 góc tương ứng}\right)\)
Mà `2` góc này nằm ở vị trí sole trong
\(\Rightarrow\text{ }\text{MC // AB (tính chất)}\)
`c)`
Vì E là trung điểm của AC; F là trung điểm của MC
\(\Rightarrow\text{EA = EC; FM = FC}\)
Ta có:
\(\left\{{}\begin{matrix}\text{EA = EC}\\\text{FM =FC}\\\text{HA = HM}\end{matrix}\right.\)
\(\Rightarrow\text{AF; ME và CH}\) lần lượt là các đường trung tuyến của `\triangle ACM`
Mà AF cắt HC tại G
\(\Rightarrow\) G là trọng tâm của `\triangle ACM`
\(\Rightarrow\) \(\text{G}\in\text{ME}\)
\(\Rightarrow\) `3` điểm M, G, E thẳng hàng (đpcm).
Trong tam giác ABC, áp dụng định lý về tổng 3 góc:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Leftrightarrow120^0+2.\widehat{ABC}=180^0\) (do \(\widehat{ABC}=\widehat{ACB}\))
\(\Leftrightarrow\widehat{ABC}=30^0\)
Vậy góc tạo bởi mái nhà AB và vách tường BE là:
\(180^0-\left(\widehat{ABC}+\widehat{EBC}\right)=180^0-\left(30^0+90^0\right)=60^0\)
Gọi A là biến cố "Số xuất hiện trên thẻ được rút ra là số chia 4 dư 2"
=>A={2;6;10;14;18;22;26;30}
=>n(A)=8
\(n\left(\Omega\right)=30-1+1=30\)
\(P_A=\dfrac{8}{30}=\dfrac{4}{15}\)
Bài 1
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC
Do M là trung điểm của BC (gt)
⇒ BM = MC
Xét ∆AMB và ∆AMC có:
AB = AC (cmt)
BC = MC (cmt)
AM là cạnh chung
⇒ ∆AMB = ∆AMC (c-c-c)
b) Do AD // BC (gt)
⇒ AD // BM
⇒ ∠DAI = ∠MBI (so le trong)
Xét ∆AID và ∆BIM có:
∠DAI = ∠MBI (cmt)
AI = BI (do I là trung điểm của AB)
∠AID = ∠BIM (đối đỉnh)
⇒ ∆AID = ∆BIM (g-c-g)
⇒ AD = BM (hai cạnh tương ứng)
Mà BM = MC (cmt)
⇒ AD = MC
c) ∆AMB = ∆AMC (cmt)
⇒ ∠AMB = ∠AMC (hai góc tương ứng)
Mà ∠AMB + ∠AMC = 180⁰ (kề bù)
⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰
⇒ AM ⊥ BC
⇒ ∠AMC = ∠EMC = 90⁰
⇒ ∆MCE vuông tại M
Mà AD // BC (cmt)
⇒ AD ⊥ AM
⇒ ∠DAM = ∠DAE = 90⁰
⇒ ∆ADE vuông tại A
Do AD // BC (gt)
⇒ ∠ADE = ∠MCE (so le trong)
Xét hai tam giác vuông: ∆ADE và ∆MCE có:
AD = MC (cmt)
∠ADE = ∠MCE (cmt)
⇒ ∆ADE = ∆MCE (cạnh góc vuông - góc nhọn kề)
⇒ AE = ME (hai cạnh tương ứng)
⇒ E là trung điểm của AM
Do ∆AID = ∆BIM (cmt)
⇒ ID = IM (hai cạnh tương ứng)
⇒ I là trung điểm của MD
∆ADM có:
AI là đường trung tuyến (do I là trung điểm của MD)
DE là đường trung tuyến (do E là trung điểm của AM)
Mà AI và DE cắt nhau tại S
⇒ S là trọng tâm của ∆ADE
⇒ AS = 2SI
⇒ 3AS = 6SI
Lại có:
AI = BI (cmt)
⇒ AB = AI + BI = 3SI + 3SI = 6SI
⇒ AB = 3AS
Mà AB > BC (gt)
⇒ 3AS > BC
Hay BC < 3AS
Bài 3
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét hai tam giác vuông: ∆ABH và ∆ACH có:
AB = AC (cmt)
AH là cạnh chung
⇒ ∆ABH = ∆ACH (cạnh huyền - cạnh góc vuông)
b) ∆ABC cân tại A (gt)
AH là đường cao (gt)
⇒ AH cũng là đường trung tuyến của ∆ABC
Lại có N là trung điểm của AC (gt)
⇒ BN là đường trung tuyến thứ hai của ∆ABC
Mà AH và BN cắt nhau tại G (gt)
⇒ G là trọng tâm của ∆ABC
Xét ∆ANG và ∆CNK có:
AN = CN (do N là trung điểm của AC)
∠ANG = ∠CNK (đối đỉnh)
NG = NK (gt)
⇒ ∆ANG = ∆CNK (c-g-c)
⇒ ∠AGN = ∠CKN (hai góc tương ứng)
Mà ∠AGN và ∠CKN là hai góc so le trong
⇒ AG // CK
c) Do G là trọng tâm của ∆ABC (cmt)
⇒ AG = 2GN
Lại có:
NG = NK (gt)
⇒ GK = 2GN
Mà BG = 2GN (cmt)
⇒ BG = GK
⇒ G là trung điểm của BK
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔMKC
Sửa đề: H là trung điểm của BC
a: Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
b: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔAMH và ΔANH có
AM=AN
\(\widehat{MAH}=\widehat{NAH}\)
AH chung
Do đó: ΔAMH=ΔANH
=>HM=HN
c: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC