K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2022

Khi x = 0 không là nghiệm của phương trình  x4+3x3+6x+4=0x4+3x3+6x+4=0

Do đó x≠0x≠0 , chia 2 vế phương trình cho x2x2 ta được:

x2+3x+6x+4x2=0x2+3x+6x+4x2=0  

⇔(x2+4x2)+(3x+6x)=0⇔x2+4x2+3x+6x=0  

⇔(x2+4x2)+3(x+2x)=0⇔x2+4x2+3x+2x=0 

Đặt x+2x=t⇒x2+4x2=t2−4x+2x=t⇒x2+4x2=t2-4 , khi đó phương trình trở thành:

t2+3t−4=0t2+3t-4=0  

⇔(t−1)(t+4)=0⇔t-1t+4=0  

⇔⇔[t=1t=−4t=1t=-4  

+ Với t = 1, khi đó

 x+2x=1x+2x=1

⇔x2−x+2=0⇔x2-x+2=0  

⇔(x−12)2+74=0⇔x-122+74=0  

⇒⇒  phương trình vô nghiệm

+ Với t = -4, khi đó:

x+2x=−4x+2x=-4 

⇔x2+4x+2=0⇔x2+4x+2=0 

⇔(x+2)2−2=0⇔x+22-2=0 

⇔(x+2)2=2⇔x+22=2 

⇔⇔[x+2=√2x+2=−√2x+2=2x+2=-2

⇔⇔[x=√2−2x=−√2−2x=2-2x=-2-2

Vậy   S={−2+√2;−2−√2}S=-2+2;-2-2

x4−3x2+6x−4=0x4-3x2+6x-4=0  

⇔x4−x3−2(x3−1)+6(x−1)=0⇔x4-x3-2x3-1+6x-1=0  

⇔x3(x−1)−2(x−1)(x2+x+1)+6(x−1)=0⇔x3x-1-2x-1x2+x+1+6x-1=0  

 ⇔(x−1)(x3−2x2−2x−2+6)=0⇔x-1x3-2x2-2x-2+6=0 

⇔(x−1)(x3−2x2−2x+4)=0⇔x-1x3-2x2-2x+4=0  

⇔(x−1)[x2(x−2)−2(x−2)]=0⇔x-1x2x-2-2x-2=0  

⇔(x−1)(x−2)(x2−2)=0⇔x-1x-2x2-2=0  

⇔(x−1)(x−2)(x−√2)(x+√2)=0⇔x-1x-2x-2x+2=0  

⇔⇔ ⎡⎢⎣x=1x=2x=±√2x=1x=2x=±2  

Vậy   S={1;2;√2;−√2}S=1;2;2;-2

 :3

4 tháng 2 2022

S=1;2;-1;-2 nha

HT

@@@@@@@@@@@@@@@@@22

4 tháng 2 2022

Nếu số đó là \(n\)thì ta có \(n+1,5=2\times n-0,5\)

hay \(2\times n-n=1,5+0,5\)

hay \(n=2\)

Vậy số đó là 2.

4 tháng 2 2022

Gọi số đó là x, ta có:

\(x+1,5=2x-0,5\Leftrightarrow x+\left(1,5-0,5\right)=2x\)

\(\Rightarrow x=1,5-0,5\Leftrightarrow x=1\)

1 tháng 3 2022

gfvfvfvfvfvfvfv555

4 tháng 2 2022

- Sáng tác : Năm 1010

- Tác giả : Lí Công Uẩn (974-1028) tức Lí Thái Tổ

- Quê quán: Là người châu Cổ Pháp, lộ Bắc Giang (nay là xã Đình Bảng, huyện Từ Sơn, tỉnh Bắc Ninh)

- Cuộc đời và sự nghiệp sáng tác:

   + Ông là người thông minh, có chí lớn, lập được nhiều chiến công

   + Dưới thời Lê ông làm chức Tả thân vệ Điện tiền chỉ huy sứ

   + Khi Lê Ngọa mất ông được tôn lên làm vua lấy niên hiệu là Thuận Thiên.

- Phong cách sáng tác: Sáng tác của ông chủ yếu là để ban bố mệnh lệnh, thể hiện tư tưởng chính trị lớn lao có ảnh hưởng đến vận nước

Giá trị nội dung

- Bài Chiếu phản ánh khát vọng của nhân dân về một dân tộc độc lập thống nhất đồng thời phản ánh ý chí tự cường của dân tộc Đại Việt trên đà lớn mạnh

 Giá trị nghệ thuật

- Chiếu dời đô là áng văn chính luận đặc sắc viết theo lối biền ngẫu, các vế đối nhau cân xứng nhịp nhàng

- Cách lập luận chặt chẽ, lí lẽ sắc sảo rõ ràng.

- Dẫn chứng tiêu biểu giàu sức thuyết phục.

- Có sự kết hợp hài hòa giữa tình và lí.

# AHT

4 tháng 2 2022

- Lí Công Uẩn (974-1028) tức Lí Thái Tổ

- Quê quán: Là người châu Cổ Pháp, lộ Bắc Giang (nay là xã Đình Bảng, huyện Từ Sơn, tỉnh Bắc Ninh)

- Cuộc đời và sự nghiệp sáng tác:

   + Ông là người thông minh, có chí lớn, lập được nhiều chiến công

   + Dưới thời Lê ông làm chức Tả thân vệ Điện tiền chỉ huy sứ

   + Khi Lê Ngọa mất ông được tôn lên làm vua lấy niên hiệu là Thuận Thiên.

- Phong cách sáng tác: Sáng tác của ông chủ yếu là để ban bố mệnh lệnh, thể hiện tư tưởng chính trị lớn lao có ảnh hưởng đến vận nước

II. Đôi nét về tác phẩm Chiếu dời đô

1. Hoàn cảnh sáng tác

- Năm 1010, Lí Công Uẩn quyết định dời đô từ Hoa Lư ra Đại La, đổi tên Đại Việt thành Đại Cồ Việt. Nhân dịp này ông đã viết bài chiếu để thông báo rộng rãi quyết định cho nhân dân được biết

4 tháng 2 2022

\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)

\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)

\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)

4 tháng 2 2022

a, Xét tam giác ABC, có:

M là trung điểm của AB

N là trung điểm của AC

=> MN là đtb của tam giác ABC

=> MN//BC

=> BMNC là hình thang (MN//BC)

Vì tam giác ABC  cân tại A nên góc ABC = góc ACB

=> góc MBC = góc NCB.

Xét hình thang BMNC(MN//BC), có:

góc MBC = góc NCB

=> BMNC là hình thang cân.

b, Xét tam giác ABC, có:

N là trung điểm của AC

H là trung điểm của BC

=> NH là đtb của tam giác ABC

=> NH//AB và NH = 1/2 .AB

Vì M là trung điểm của AB nên AM = 1/2 . AB

Suy ra: AM = NH

Xét tứ giác AMHN, có:

AM = NH

NH//AM (NH//AB)

=> AMHN là hình bình hành (1)

Vì tam giác ABC cân tại A nên AB = AC

mà AM = 1/2 . AB ( M là tđ của AB )

     AN = 1/2 . AC ( N là tđ của AC )

Suy ra: AM = AN (2)

Từ (1) và (2) ta suy ra: hình bình hành AMHN là hình thoi.

c,SABC = 1/2 . AH . BC = 1/2 . 4 . 6 = 12 (cm2)

Vì MN là đtb của tam giác ABC nên MN = 1/2 . BC

=> MN = 1/2 . 6 = 3 (cm)

Xét tam giác AHC có:

N là trung điểm của AC

ON // HC ( MN//BC)

=> O là trung điểm của AH

=> AO = 1/2 . AH = 1/2 . 4 = 2 (cm)

SAMN = 1/2 . AO . MN = 1/2 . 2 . 3 = 3 (cm2)

SBMNC = SABC - SAMN = 12 - 3 = 9 (cm2)

d,Vì K là điểm đối xứng của H qua N nên N là tđ của HK

=> HN = 1/2 . HK (3)

Vì AMHN là hình thoi nên HN = AM

mà AM = 1/2 . AB nên HN = 1/2 . AB (4)

Từ(3) và (4) ta suy ra:

HK = AB

Vì AM//NH nên AB//HK

mà HK = AB

nên AKHB là hình bình hành

=> hai đường chéo AH và BK cắt nhau tại tđ của mỗi đường

mà O là trung của AH

nên O là trung điểm của BK

=> BK đi qua O

=> B,O,K thẳng hàng.

4 tháng 2 2022

23342 

4 tháng 2 2022

23342

4 tháng 2 2022

\(x^4+3x^3+6x+4=0\)

Nhận thấy phương trình không thể có nghiệm không âm vì khi đó \(\hept{\begin{cases}x^4\ge0\\3x^3\ge0\\6x\ge0\end{cases}}\)dẫn đến \(x^4+3x^3+6x+4\ge4>0\)

Do đó điều kiện là \(x< 0\)

Vì \(x\ne0\)nên chia cả 2 vế của phương trình đã cho cho \(x^2\), ta được:

\(x^2+3x+\frac{6}{x}+\frac{4}{x^2}=0\)\(\Leftrightarrow\left(x^2+\frac{4}{x^2}\right)+\left(3x+\frac{6}{x}\right)=0\)\(\Leftrightarrow\left(x^2+\frac{4}{x^2}\right)+3\left(x+\frac{2}{x}\right)=0\)(*)

Đặt \(x+\frac{2}{x}=t\). Vì \(x< 0\)\(\Leftrightarrow\frac{2}{x}< 0\)\(\Leftrightarrow x+\frac{2}{x}< 0\)\(\Leftrightarrow t< 0\)

,ta có \(\left(x+\frac{2}{x}\right)^2=x^2+2x.\frac{2}{x}+\frac{4}{x^2}=x^2+\frac{4}{x^2}+4\)\(\Leftrightarrow x^2+\frac{4}{x^2}=\left(x+\frac{2}{x}\right)^2-4=t^2-4\)

Phương trình (*) trở thành \(t^2-4+3t=0\)\(\Leftrightarrow t^2-t+4t-4=0\)\(\Leftrightarrow t\left(t-1\right)+4\left(t-1\right)=0\)\(\Leftrightarrow\left(t-1\right)\left(t+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\left(loại\right)\\t=-4\left(nhận\right)\end{cases}}\)

\(\Leftrightarrow x+\frac{2}{x}=-4\)\(\Leftrightarrow x+\frac{2}{x}+4=0\)(1)

Mà \(x\ne0\)nên nhân cả 2 vế của phương trình (1) với \(x\), ta có:

\(x^2+4x+2=0\)\(\Leftrightarrow\left(x^2+4x+4\right)-2=0\)\(\Leftrightarrow\left(x+2\right)^2-\left(\sqrt{2}\right)^2=0\)\(\Leftrightarrow\left(x+2+\sqrt{2}\right)\left(x+2-\sqrt{2}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2+\sqrt{2}=0\\x+2-\sqrt{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2-\sqrt{2}\left(nhận\right)\\x=-2+\sqrt{2}\left(nhận\right)\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-2-\sqrt{2};-2+\sqrt{2}\right\}\)

4 tháng 2 2022

điều kiện \(x\ne0\)

\(\frac{x-1}{3}+\frac{x+3}{x}=2\) \(\Leftrightarrow\frac{x\left(x-1\right)+3\left(x+3\right)}{3x}=2\)\(\Leftrightarrow\frac{x^2-x+3x+3}{3x}=2\)\(\Leftrightarrow\frac{x^2+2x+3}{3x}=2\)\(\Rightarrow x^2+2x+3=6x\)\(\Leftrightarrow x^2-4x+3=0\)\(\Leftrightarrow x^2-x-3x+3=0\)\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{cases}}\)

Vậy [...]