Trên quãng đường AC dài 200 km có một địa điểm B các A là 10 km. Lúc 7 giờ, một ô tô đi từ A, một ô tô khác đi từ B, cả hai cùng đi tới C với vận tốc thứ tự bằng 50 km/h và 40 km/h. Hỏi lúc mấy giờ thì khoảng cách đến C của xe thứ hai gấp đôi khoảng cách đến C của xe thứ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; ΔABC=ΔDEF
=>AB=DE; BC=EF; AC=DF; \(\widehat{BAC}=\widehat{EDF};\widehat{ABC}=\widehat{DEF};\widehat{ACB}=\widehat{DFE}\)
Xét ΔBAM và ΔEDN có
AB=DE
\(\widehat{ABM}=\widehat{DEN}\)
BM=EN
Do đó: ΔBAM=ΔEDN
=>AM=DN và \(\widehat{BAM}=\widehat{EDN}\)
số vịt trên bờ bằng 20% số vịt dưới ao tức là số vịt trên bờ bằng 1/5 số vịt dưới ao => số vịt trên bờ bằng 1/6 tổng đàn vịt
số vịt trên bờ bằng 12,5% số vịt dưới ao tức là số vịt trên bờ bằng 1/8 số vịt dưới ao => số vịt trên bờ bằng 1/9 tổng đàn vịt
Phân số chỉ 3 con vịt là
1/6-1/8=1/24 đàn vịt
Số vịt trong đàn là
3:1/24=72 con
\(\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\right)\left(x-\dfrac{1}{2}\right)=\dfrac{3}{5}:\dfrac{2}{3}\)
=>\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\left(x-\dfrac{1}{2}\right)=\dfrac{3}{5}\cdot\dfrac{3}{2}=\dfrac{9}{10}\)
=>\(\dfrac{9}{10}\left(x-\dfrac{1}{2}\right)=\dfrac{9}{10}\)
=>\(x-\dfrac{1}{2}=1\)
=>\(x=1+\dfrac{1}{2}=\dfrac{3}{2}\)
a: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{1}{2}\right\}\)
\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}-\dfrac{x-5}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-\left(x+1\right)+2\left(x-1\right)-x+5}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-x-1+2x-2-x+5}{-2x+1}=\dfrac{2}{-2x+1}\)
b: Để A>0 thì \(\dfrac{2}{-2x+1}>0\)
mà 2>0
nên -2x+1>0
=>-2x>-1
=>\(x< \dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x\ne-1\end{matrix}\right.\)
\(3^x+25=26\times2^0+2\times3^0\)
\(3^x+25=26\times1+2\times1\)
\(3^x+25=28\)
\(3^x=28-25\)
\(3^x=3\)
\(x=1\)
3x + 25 = 26 . 20 + 2 . 30
3x + 25 = 26 . 1 + 2 . 1
3x + 25 = 28
3x = 3
x = 1
a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
b: AEHF là hình chữ nhật
=>HF//AE và HE//AF
=>HF//AB và HE//AC
Xét ΔABC có
H là trung điểm của BC
HE//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
H là trung điểm của BC
HF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AKBH có
E là trung điểm chung của AB và KH
=>AKBH là hình bình hành
c: Xét ΔABC có
H,E lần lượt là trung điểm của BC,BA
=>HE là đường trung bình của ΔABC
=>\(HE=\dfrac{AC}{2}\)
mà \(HE=\dfrac{HK}{2}\)
nên AC=HK
Xét tứ giác ACHK có
HK//AC
HK=AC
Do đó: ACHK là hình bình hành
=>AH cắt CK tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của CK
=>C,O,K thẳng hàng
\(\overline{abccba}=100001xa+10010xb+1100xc=\)
\(=11x9091xa+11x910xb+11x100xc=\)
\(=11x\left(9091xa+910xb+100xc\right)⋮11\)
a: ĐKXĐ: \(x\ne-1\)
\(x^2+x=0\)
=>x(x+1)=0
=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Khi x=0 thì \(A=\dfrac{0-3}{0+1}=\dfrac{-3}{1}=-3\)
b: \(Q=A\cdot B\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
\(=\dfrac{x-3}{x+1}\left(\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x-3}{x+1}\cdot\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{1}{x+1}\cdot\dfrac{x^2+6x+9}{x+3}=\dfrac{x+3}{x+1}\)