K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE
Ta có: \(\widehat{BIH}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{HBI}=\widehat{ABD}\)

nên \(\widehat{BIH}=\widehat{ADI}\)

=>\(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

c: Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)

\(\widehat{HAE}+\widehat{BEA}=90^0\)

mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)

nên \(\widehat{CAE}=\widehat{HAE}\)

=>AE là phân giác của góc HAC

\(4x^3-x^2-ax+b⋮x^2+1\)

=>\(4x^3+4x-x^2-1+\left(-a-4\right)x+b+1⋮x^2+1\)

=>-a-4=0 và b+1=0

=>a=-4 và b=-1

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔBAD có BA=BD và \(\widehat{ABD}=60^0\)

nên ΔBAD đều

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó: ΔBAE=ΔBDE

=>\(\widehat{ABE}=\widehat{DBE}\)

=>BE là phân giác của góc ABC

c: Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}\)

=>\(\widehat{DAC}+60^0=90^0\)

=>\(\widehat{DAC}=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC đều

=>DA=DC

=>DC=DB

=>D là trung điểm của BC

=>\(AD=\dfrac{1}{2}BC\)

d: Xét ΔBMC có

BN,CA là các đường cao

BN cắt CA tại E

Do đó: E là trực tâm của ΔBMC

=>ME\(\perp\)BC

mà ED\(\perp\)BC

nên M,E,D thẳng hàng

=>BA,CN,DE đồng quy

3 tháng 5

mọi ng giúp e nhanh với, e cảm ơn rất nhiềuuu

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔAMB=ΔAMC

b: ΔAMB=ΔAMC

=>\(\widehat{MAB}=\widehat{MAC}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF và ME=MF

ta có: AE=AF

=>A nằm trên đường trung trực của EF(1)

Ta có: ME=MF

=>M nằm trên đường trung trực của EF(2)

Từ (1),(2) suy ra AM là đường trung trực của EF

a: AI là phân giác của góc BAC

=>\(\widehat{BAI}=\widehat{CAI}=\dfrac{\widehat{BAC}}{2}=60^0\)

Xét ΔABD có AB=AD và \(\widehat{BAD}=60^0\)

nên ΔABD đều

=>BD=AB

 

3 tháng 5

   (\(x\) - 1) - (y - 1) 

\(x\) - 1 - y + 1

= (\(x\) - y)  - (1 - 1)

\(x\) - y - 0

\(x\) - y

Vậy phép tính trên là đúng.

NV
3 tháng 5

Phép tính trên đúng

a: ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{B}=80^0\)

b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có

AB=AC

\(\widehat{BAN}\) chung

Do đó: ΔANB=ΔAMC

\(2x^3+11x^2+ax+b⋮x^2+3x-1\)

=>\(2x^3+6x^2-2x+5x^2+15x-5+\left(a-13\right)x+b+5⋮x^2+3x-1\)

=>\(\left\{{}\begin{matrix}a-13=0\\b+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=13\\b=-5\end{matrix}\right.\)

a: Xét ΔBAM vuông tại A và ΔBKM vuông tại K có

BM chung

\(\widehat{ABM}=\widehat{KBM}\)

Do đó: ΔBAM=ΔBKM

=>BA=BK

=>ΔBAK cân tại B

b: Ta có: \(\widehat{CAK}+\widehat{BAK}=\widehat{BAC}=90^0\)

\(\widehat{DAK}+\widehat{BKA}=90^0\)(ΔDAK vuông tại D)

mà \(\widehat{BAK}=\widehat{BKA}\)(ΔBAK cân tại B)

nên \(\widehat{CAK}=\widehat{DAK}\)

=>AK là phân giác của góc DAC

c: Xét ΔABC vuông tại A có AD là đường cao

nên \(AD\cdot BC=AB\cdot AC\)

\(\left(AB+AC\right)^2-\left(BC+AD\right)^2\)

\(=AB^2+AC^2+2\cdot AB\cdot AC-BC^2-2\cdot BC\cdot AD-AD^2\)

\(=BC^2+2\cdot BC\cdot AD-BC^2-2\cdot BC\cdot AD-AD^2\)

\(=-AD^2< 0\)

=>\(\left(AB+AC\right)^2< \left(BC+AD\right)^2\)

=>AB+AC<BC+AD