Bài4 Tính giá trị biểu thức
A=-3/5+(-2/5-99)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý của đề bài là nếu có 4 số lẻ \(a,b,c,d\) mà \(a+b+c+d=202\) thì \(ƯCLN\left(a,b,c,d\right)=1\). Còn cái mà bạn Tú phản hồi là lấy VD \(3+9+93+97=202\) mà \(ƯCLN\left(3,9\right)\ne1\) thì cái đấy chỉ là ƯCLN của 2 trong 4 số thôi nên đề bài vẫn đúng nhé.
Còn bài giải như sau: Gọi \(ƯCLN\left(a,b,c,d\right)=k\) (\(k\inℕ^∗\) và k lẻ)
Khi đó \(\left\{{}\begin{matrix}a=xk\\b=yk\\c=zk\\d=tk\end{matrix}\right.\) với \(x,y,z,t\) là các số tự nhiên khác 0 và nguyên tố cùng nhau.
Như vậy nếu \(a+b+c+d=202\) thì \(xk+yk+zk+tk=202\) hay \(x+y+z+t=\dfrac{202}{k}\). Khi đó \(202⋮k\) \(\Rightarrow k\in\left\{1;2;101;202\right\}\)
Do \(x,y,z,t\ge1\) nên \(x+y+z+t\ge4\). Điều này có nghĩa là \(\dfrac{202}{k}\ge4\) hay \(k\le50\). Do đó \(k=1\) hoặc \(k=2\). Tuy nhiên, vì \(k\) lẻ nên giá trị duy nhất có thể của \(k\) là \(k=1\)
Khi đó \(a=x;b=y;c=z;d=t\), dẫn đến:
\(ƯCLN\left(a,b,c,d\right)=ƯCLN\left(x,y,z,t\right)=1\)
Ta có đpcm.
Đề bài chưa rõ bạn nhé
Bốn số lẻ đó chưa chắc đã là bốn số nguyên tố cùng nhau
VD: 202 = 3+9+93+97
Mà 3 với 9 có phải số nguyên tố cùng nhau đâu
\(\dfrac{n^2-2n+5}{n+2}=\dfrac{n^2+2n-4n+5}{n+2}=n-\dfrac{4n-5}{n+2}\)
\(=n-\dfrac{4\left(n+2\right)-13}{n+2}=n-4-\dfrac{13}{n+2}\)
Do n - 4 nguyên => 13/n+2 nguyên
\(n+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
n+2 | 1 | -1 | 13 | -13 |
n | -1 | -3 | 11 | -15 |
Do có 2 trường hợp âm và dương cậu nhé. Theo đề bài của cậu là:
(3x + 2)2 = \(\dfrac{25}{49}\)
Ở đây, \(\dfrac{25}{49}=\dfrac{-25}{-49}=-\dfrac{25}{49}\) nên phải chia thành các trường hợp khác nhau và có thể đem lại các giá trị x khác nhau.
`#3107.101107`
`2.`
`c)` $(3x + 2)^2 = \dfrac{25}{49}$
\(\Rightarrow\left(3x+2\right)^2=\dfrac{\left(\pm5\right)^2}{\left(\pm7\right)^2}\\ \left(3x+2\right)^2=\left(\pm\dfrac{5}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+2=\dfrac{5}{7}\\3x+2=-\dfrac{5}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=-\dfrac{9}{7}\\3x=-\dfrac{19}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{7}\\x=-\dfrac{19}{21}\end{matrix}\right.\)
Vậy, \(x\in\left\{-\dfrac{3}{7};-\dfrac{19}{21}\right\}.\)
55 + 88 = 143
143 = ... + 90
... = 143 - 90
... = 53
Vậy 55 + 88 = 53 + 90 = 143
Ta có: a/b=15/21=5/7; b/c=9/12=3/4
Đặt a/b=5k/7k
b/c=3k1/4k1
c/d=9k2/11k2
Điều kiện là k, k1; k2 thuộc N*
Khi đó:
+ b=7k=3k1
Vì b là số tự nhiên suy ra 3k1 chia hết cho 7
Do 3 và 7 là hai số đôi một nguyên tố cùng nhau nên k1 chia hết cho 7
+ c=4k1=9k2
Vì c là số tự nhiên suy ra 4k1 chia hết cho 9
Do 9 và 4 là hai số nguyên tố cùng nhau suy ra k1 chia hết cho 9
Ta thấy: K1 là nhỏ nhất và khác 0
Mà k1 chia hết cho cả 7 và 9 suy ra k1=63
Suy ra b=63x3=189
a= 189:7x5=135
c= 63x4=252
d=252:9x11=308
\(\dfrac{a}{b}=\dfrac{15}{21}=\dfrac{5}{7}\)
=>\(\dfrac{a}{5}=\dfrac{b}{7}\)
\(\dfrac{b}{c}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{b}{3}=\dfrac{c}{4}\)
=>\(\dfrac{b}{27}=\dfrac{c}{36}\)
\(\dfrac{c}{d}=\dfrac{9}{11}\)
=>\(\dfrac{c}{9}=\dfrac{d}{11}\)
=>\(\dfrac{c}{36}=\dfrac{d}{44}\)
Do đó: \(\dfrac{a}{5}=\dfrac{b}{7};\dfrac{b}{27}=\dfrac{c}{36}=\dfrac{d}{44}\)
=>\(\dfrac{a}{135}=\dfrac{b}{189};\dfrac{b}{189}=\dfrac{c}{252}=\dfrac{d}{308}\)
=>\(\dfrac{a}{135}=\dfrac{b}{189}=\dfrac{c}{252}=\dfrac{d}{308}\)
=>Bộ số tự nhiên a,b,c,d nhỏ nhất thỏa mãn yêu cầu đề bài là: \(\left(a;b;c;d\right)=\left(135;189;252;308\right)\)
`a) (x - 34) × 26 = 0`
`. x - 34. = 0 ÷ 26`
`. x - 34. = 0`
`. x. = 0 + 34 `
`. x. = 34`
`b) 125 + (x + 231) ÷ 2 = 358`
`. (x + 231) ÷ 2 = 358 - 125`
`. (x + 231) ÷ 2.= 233`
`. (x + 231). = 233 × 2`
`. x + 231. = 466`
`. x. = 466 - 231`
`. x. = 235`
\(A=\dfrac{-3}{5}+\left(\dfrac{-2}{5}-99\right)\)
\(A=\dfrac{-3}{5}+\dfrac{-2}{5}-99\)
\(A=\left(\dfrac{-3}{5}+\dfrac{-2}{5}\right)-99\)
\(A=\dfrac{-5}{5}-99\)
\(A=-1-99\)
\(A=-100\)