\(\sqrt{3y+1}+1=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:
[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]
[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]
[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]
[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]
[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]
[\sqrt{(4m+7)^2(4m+16)}]
Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:
[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]
Từ đây, ta được phương trình bậc hai:
[(4m+7)^2(4m+16)=1 ]
Giải phương trình này, ta được hai nghiệm:
[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]
Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:
[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]
Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]
Tổng 2 vận tốc:
210:2=105(km/h)
Vận tốc xe máy:
(105 - 15):2= 45(km/h)
Đ.số: xe máy có vận tốc 45km/h
Lời giải:
PT hoành độ giao điểm:
$(m^2+1)x-12m+5=x+5$
$\Leftrightarrow m^2x-12m=0(*)$
Để 2 đths cắt nhau tại 1 điểm có hoành độ $x=2$ thì $x=2$ phải là nghiệm của $(*)$
$\Rightarrow m^2.2-12m=0$
$\Leftrightarrow 2m(m-6)=0$
$\Rightarrow m=0$ hoặc $m=6$
là sao???????
\(\sqrt{3y+1}\) + 1 = 9 (đk 3y + 1 ≥ 0 ⇒ 3y ≥ -1; ⇒ y ≥ - \(\dfrac{1}{3}\))
\(\sqrt{3y+1}\) = 9 - 1
\(\sqrt{3y+1}\) = 8
3y + 1 =82
3y + 1 = 64
3y = 64 - 1
3y = 63
y = 63 : 3
y = \(\dfrac{63}{3}\)
Vậy y = \(\dfrac{63}{3}\)