giúp em bài 6 vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: \(\left|-\dfrac{3}{5}+\dfrac{1}{2}\right|-\left(\dfrac{3}{4}-\dfrac{5}{8}\right)+\left|-\dfrac{3}{2}\right|\)
\(=\left|-\dfrac{6}{10}+\dfrac{5}{10}\right|-\dfrac{1}{8}+\dfrac{3}{2}\)
\(=\dfrac{1}{10}-\dfrac{1}{8}+\dfrac{3}{2}=\dfrac{4}{40}-\dfrac{5}{40}+\dfrac{60}{40}=\dfrac{59}{40}\)
b: \(\dfrac{2}{3}-\left|-\dfrac{7}{3}+\dfrac{3}{4}\right|-\left|-\dfrac{5}{2}+1\right|\)
\(=\dfrac{2}{3}-\left|-\dfrac{28}{12}+\dfrac{9}{12}\right|-\left|-\dfrac{5}{2}+\dfrac{2}{2}\right|\)
\(=\dfrac{2}{3}-\dfrac{19}{12}-\dfrac{3}{2}=\dfrac{8}{12}-\dfrac{19}{12}-\dfrac{18}{12}\)
\(=-\dfrac{29}{12}\)
c: \(\dfrac{1}{5}-\left(\dfrac{3}{10}-\dfrac{-3}{5}\right)-\left|\dfrac{1}{4}-\dfrac{2}{5}\right|\)
\(=\dfrac{1}{5}-\dfrac{3}{10}-\dfrac{3}{5}-\left|\dfrac{5}{20}-\dfrac{8}{20}\right|\)
\(=-\dfrac{7}{10}-\left|\dfrac{-3}{20}\right|=-\dfrac{7}{10}-\dfrac{3}{20}=-\dfrac{17}{20}\)
d: \(\left|-\dfrac{5}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right|-\left(-\dfrac{3}{4}+\dfrac{-5}{3}\right)\)
\(=\left|-\dfrac{30}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right|+\dfrac{3}{4}+\dfrac{5}{3}\)
\(=\dfrac{25}{12}+\dfrac{9}{12}+\dfrac{20}{12}=\dfrac{54}{12}=\dfrac{9}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)
Để A là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+5⋮\sqrt{x}-3\)
=>\(5⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;5;-5\right\}\)
=>\(\sqrt{x}\in\left\{4;2;8\right\}\)
=>\(x\in\left\{16;4;64\right\}\)
Thể tích phần bể chứa nước ban đầu là:
\(80\cdot50\cdot35=140000\left(cm^3\right)\)
Thể tích phần bể chứa nước lúc này sau khi thêm hòn đá là:
\(140000+20000=160000\left(cm^3\right)\)
Mực nước trong bể lúc này cao là:
\(160000:80:50=40\left(cm\right)\)
Thể tích ban đầu: 80 x 50 x 35 = 140.000 cm3
Sau khi thêm hòn đá: 140.000+20.000 = 160.000 cm3
=> Chiều cao mực nước = 160.000 / (80x50) = 40 cm
Độ dài cạnh huyền là:
\(\sqrt{3^2+7^2}=\sqrt{9+49}=\sqrt{58}\left(cm\right)\)
Bình phương cạnh huyền là:
32 + 72 = 58(cm2)
Cạnh huyền là: \(\sqrt{58}\) m
1: \(\left(x^2+2xy-3\right)\left(-xy^2\right)\)
\(=-xy^2\cdot x^2-xy^2\cdot2xy+3\cdot xy^2\)
\(=-x^3y^2-2x^2y^3+3xy^2\)
2: \(3x\left(x+2\right)-3x^2-12=0\)
=>\(3x^2+6x-3x^2-12=0\)
=>6x-12=0
=>6x=12
=>x=2
3: \(\left(2x^3-\dfrac{9}{2}x^2+\dfrac{1}{xy}\right)\cdot x^2y^3\)
\(=2x^3\cdot x^2y^3-\dfrac{9}{2}x^2\cdot x^2y^3+\dfrac{x^2y^3}{xy}\)
\(=2x^5y^3-\dfrac{9}{2}x^4y^3+xy^2\)
2; 3\(x\)(\(x+2\)) - 3\(x^2\) - 12 = 0
3\(x^2\) + 6\(x\) - 3\(x^2\) - 12 = 0
(3\(x^2\) - 3\(x^2\)) + 6\(x\) - 12 = 0
0 + 6\(x\) - 12 = 0
6\(x\) = 12
\(x\) = 12 : 6
\(x=2\)
Vậy \(x=2\)
a: \(-\dfrac{15}{19}=-1+\dfrac{4}{19}\)
\(-\dfrac{37}{41}=-1+\dfrac{4}{41}\)
\(-\dfrac{5}{9}=-1+\dfrac{4}{9}\)
\(\dfrac{23}{-27}=-\dfrac{23}{27}=-1+\dfrac{4}{27}\)
\(-\dfrac{7}{11}=-1+\dfrac{4}{11}\)
mà \(\dfrac{4}{41}< \dfrac{4}{27}< \dfrac{4}{19}< \dfrac{4}{11}< \dfrac{4}{9}\)
nên \(-\dfrac{37}{41}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
mà \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}\)
nên \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
Bài 6:
a: \(\left|x+\dfrac{1}{2}\right|>=0\forall x;\left|y-\dfrac{3}{4}\right|>=0\forall y;\left|z-1\right|>=0\forall z\)
Do đó: \(\left|x+\dfrac{1}{2}\right|+\left|y-\dfrac{3}{4}\right|+\left|z-1\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y-\dfrac{3}{4}=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{3}{4}\\z=1\end{matrix}\right.\)
b: \(\left|x-\dfrac{3}{4}\right|>=0\forall x;\left|\dfrac{2}{5}-y\right|>=0\forall y;\left|x-y+z\right|>=0\forall x,y,z\)
Do đó: \(\left|x-\dfrac{3}{4}\right|+\left|\dfrac{2}{5}-y\right|+\left|x-y+z\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{3}{4}=0\\\dfrac{2}{5}-y=0\\x-y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-x+y=-\dfrac{3}{4}+\dfrac{2}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{2}{5}\\z=-\dfrac{7}{20}\end{matrix}\right.\)
c: \(\left|x-\dfrac{2}{3}\right|>=0\forall x;\left|x+y+\dfrac{3}{4}\right|>=0\forall x,y;\left|y-z-\dfrac{5}{6}\right|>=0\forall y,z\)
Do đó: \(\left|x-\dfrac{2}{3}\right|+\left|x+y+\dfrac{3}{4}\right|+\left|y-z-\dfrac{5}{6}\right|>=0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\x+y+\dfrac{3}{4}=0\\y-z-\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x-\dfrac{3}{4}=-\dfrac{2}{3}-\dfrac{3}{4}\\z=y-\dfrac{5}{6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{17}{12}\\z=-\dfrac{17}{12}-\dfrac{10}{12}=-\dfrac{27}{12}=-\dfrac{9}{4}\end{matrix}\right.\)